首页> 外文期刊>Journal of visual communication & image representation >Research on feature extraction algorithm for plantar pressure image and gait analysis in stroke patients
【24h】

Research on feature extraction algorithm for plantar pressure image and gait analysis in stroke patients

机译:脑卒中患者足底压力图像特征提取算法与步态分析的研究

获取原文
获取原文并翻译 | 示例

摘要

The plantar pressure image is an important tool for gait analysis. It has important applications in evaluating the recovery of stroke patients after operation and formulating the rehabilitation training program. It is one of the key technologies of gait analysis to extract foot feature parameters from static/dynamic plantar pressure images. This article deals with the noise in the original image through the piecewise linear grayscale transformation, the time domain mean filter and the maximum value filter, then determine the position of the feet in the image by the foot localization algorithm based on the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and the K-means clustering method. Finally, the plantar pressure feature parameters were extracted according to the positioned images. Based on the above feature parameter extraction algorithm, the plantar pressure feature parameters of 20 healthy subjects and 20 S patients with relative recovery period (2-6 months after the onset) were compared, showing a statistically significant difference (P 0.001). Based on the above data, gait characteristics of stroke patients were further analyzed. (C) 2018 Elsevier Inc. All rights reserved.
机译:足底压力图像是步态分析的重要工具。它在评估中风患者术后康复情况和制定康复训练计划方面具有重要的应用价值。从静态/动态足底压力图像提取足部特征参数是步态分析的关键技术之一。本文通过分段线性灰度变换,时域均值过滤器和最大值过滤器处理原始图像中的噪声,然后通过基于DBSCAN的脚部定位算法确定图像中脚部的位置(Density-基于应用的空间聚类与噪声)和K均值聚类方法。最后,根据定位图像提取足底压力特征参数。基于上述特征参数提取算法,比较了20例健康受试者和20例相对恢复期(发病后2-6个月)的S患者的足底压力特征参数,差异具有统计学意义(P <0.001)。基于以上数据,对中风患者的步态特征进行了进一步分析。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号