首页> 外文期刊>Journal of visual communication & image representation >A method of multi-criteria set recognition based on deep feature representation
【24h】

A method of multi-criteria set recognition based on deep feature representation

机译:一种基于深度特征表示的多准则集识别方法

获取原文
获取原文并翻译 | 示例

摘要

The large variations in the angle of different camera views and illumination can change the appearance of a lot of people, which makes human re identification is still a challenging problem. Therefore, the development of robust feature descriptors and the design of discriminative distance metrics to measure similarity between pedestrian images are two key aspects of human re identification. In this paper, we propose a method to improve the performance of the re identification using depth learning and multiple metric ensembles. First, we use a variety of data sets to train the general convolutional neural network (CNN), which is used to extract the features of the training and test set after deep level. Deep architecture makes it possible for people to learn more abstract and internal features that are robust to changes in viewpoint and illumination. Then, we utilize the deep features of the training set to learn a specific distance metric and combine it with the cosine distance metric. Multi metric sets can be used to measure the similarity between different images. Finally, a large number of experiments show that our method can effectively improve the recognition performance compared to the state-of-the-art methods. (C) 2018 Elsevier Inc. All rights reserved.
机译:不同摄像机视角和照明角度的巨大变化会改变很多人的外表,这使得人的重新识别仍然是一个难题。因此,鲁棒性特征描述符的开发以及用于测量行人图像之间相似度的区分距离度量的设计是人类重新识别的两个关键方面。在本文中,我们提出了一种使用深度学习和多指标合奏来提高重新识别性能的方法。首先,我们使用各种数据集来训练通用卷积神经网络(CNN),该网络用于在深度学习后提取训练和测试集的特征。深度的体系结构使人们有可能学习更多抽象的和内部的特征,这些特征对于改变视点和照明具有鲁棒性。然后,我们利用训练集的深层功能来学习特定的距离度量并将其与余弦距离度量结合起来。可以使用多度量集来测量不同图像之间的相似度。最后,大量实验表明,与最新方法相比,我们的方法可以有效地提高识别性能。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号