首页> 外文期刊>Journal of visual communication & image representation >Feedback weight convolutional neural network for gait recognition
【24h】

Feedback weight convolutional neural network for gait recognition

机译:反馈权重卷积神经网络的步态识别

获取原文
获取原文并翻译 | 示例

摘要

Gait recognition is an important issue currently. In this paper, we propose to combine deep features and hand-crafted representations into a globally trainable deep model. Specifically, a set of deep feature vectors are firstly extracted by a pre-trained CNN model from the input sequences. Then, a kernel function with respect to the fully connected vector is trained as the guiding weight of the respective receptive fields of the input sequences. Therefore, the hand-crafted features are extracted based on the guiding weight. Finally, the hand-crafted features and the deep features are combined into a unified deep network to complete classification. The optimized gait descriptor, termed as deep convolutional location weight descriptor (DLWD), is capable of effectively revealing the importance of different body parts to gait recognition accuracy. Experiments on two gait data sets (i.e., CASIA-B, OU-ISIR) show that our method outperforms the other existing methods for gait recognition.
机译:步态识别是当前的重要问题。在本文中,我们建议将深度特征和手工制图表达结合到一个可全局训练的深度模型中。具体而言,首先通过预训练的CNN模型从输入序列中提取一组深度特征向量。然后,针对完全连接的向量的核函数被训练为输入序列的各个感受野的指导权重。因此,基于引导权重提取手工制作的特征。最后,将手工制作的特征和深度特征合并为统一的深度网络以完成分类。优化的步态描述符称为深度卷积位置权重描述符(DLWD),能够有效地揭示不同身体部位对步态识别准确性的重要性。对两个步态数据集(即CASIA-B,OU-ISIR)进行的实验表明,我们的方法优于其他现有的步态识别方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号