首页> 外文期刊>Journal of visual communication & image representation >Visual tracking via context-aware local sparse appearance model
【24h】

Visual tracking via context-aware local sparse appearance model

机译:通过上下文感知的本地稀疏外观模型进行视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Most existing local sparse trackers are prone to drifting away as they do not make use of discriminative information of local patches. In this paper, we propose an effective context-aware local sparse appearance model to alleviate the drift problem caused by background clutter and occlusions. First, considering that different local patches should have different impacts on the likelihood computation, we present a novel Impact Allocation Strategy (IAS) with integration of the spatial-temporal context. Varying positive impact factors are adaptively assigned to different local patches based on their ability distinguishing the spatial context, which provides discriminative information to prevent the tracker from drifting. Furthermore, we exploit temporal context to introduce some historical information for more accurate locating. Second, we present a new patch-based dictionary update method being able to update each patch independently with the validation of effectiveness. On the one hand, we introduce sparsity concentration index to check whether the local patch to be updated is a valid local patch from the target object. On the other hand, spatial context is further employed to eliminate the effect of the background. Experimental results show the superiority and competitiveness of the proposed method on the benchmark data set compared to other state-of-the-art algorithms. (C) 2018 Elsevier Inc. All rights reserved.
机译:大多数现有的本地稀疏跟踪器很容易漂移,因为它们不利用本地补丁的区分性信息。在本文中,我们提出了一种有效的上下文感知局部稀疏外观模型,以缓解背景杂波和遮挡所引起的漂移问题。首先,考虑到不同的局部斑块对似然计算的影响应该不同,我们提出了一种整合时空上下文的新颖的影响分配策略(IAS)。根据不同的正面影响因素区分空间上下文的能力,它们会自适应地分配给不同的局部补丁,从而提供区分性信息以防止跟踪器漂移。此外,我们利用时间上下文来引入一些历史信息以进行更精确的定位。其次,我们提出了一种基于补丁的新字典更新方法,该方法能够通过有效性验证独立地更新每个补丁。一方面,我们引入稀疏度集中度指标来检查要更新的本地补丁是否是来自目标对象的有效本地补丁。另一方面,进一步利用空间背景来消除背景的影响。实验结果表明,与其他最新算法相比,该方法在基准数据集上具有优越性和竞争力。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号