...
首页> 外文期刊>Journal of Vacuum Science & Technology >Molecular beam epitaxy growth of InGaN-GaN superlatticQs for optoelectronic devices
【24h】

Molecular beam epitaxy growth of InGaN-GaN superlatticQs for optoelectronic devices

机译:用于光电器件的InGaN-GaN超晶格Qs的分子束外延生长

获取原文
获取原文并翻译 | 示例

摘要

In the absence of native substrates for InGaN films, the achievement of thick InGaN films of high structural quality remains a challenge. The investigation of InGaN-GaN superlattice (SL) structures is one potential way to increase optical absorption at energies below the GaN bandgap while reducing the formation of detrimental defects. In this article the authors evaluate the structural and optical properties of InGaN-GaN superlattices grown by plasma assisted molecular beam epitaxy with indium compositions of up to 38% and periods from 8 to 20 nm. Of primary concern was the degree of film relaxation as determined by x-ray diffraction (XRD) reciprocal space mapping as a function of indium content and thickness of the InGaN layers. Indium well fractions of up to 0.15 were found to exhibit little or no relaxation for the structures tested by x-ray diffraction. For indium well fractions near ~0.2, relaxations of the superlattices were in the range of 35% depending on total layer thickness. The samples with indium fractions of 0.33 and 0.38 had relaxations near 30%. For all of the superlattice layers, the onset of absorption began at significantly lower energy if one compares the average indium fraction in the SL to a uniform InGaN film of the same fraction, p-n photodiode structures based on superlattice layers were fabricated and tested for 1-V characteristics and spectral response. The high indium content superlattice devices exhibited a substantial spectral response extension down to —2.3 eV. However, the I-V behavior was leaky at both forward and reverse biases, which is in a good agreement with the XRD analysis showing that material relaxation and defect generation occur in the SL layers with higher indium content. © 20/7 American Vacuum Society.
机译:在没有用于InGaN膜的天然衬底的情况下,实现具有高结构质量的厚InGaN膜仍然是一个挑战。对InGaN-GaN超晶格(SL)结构的研究是一种在GaN带隙以下的能量下增加光吸收同时减少有害缺陷形成的潜在方法。在本文中,作者评估了通过等离子体辅助分子束外延生长的InGaN-GaN超晶格的结构和光学性质,其中铟的组成高达38%,周期为8至20 nm。主要关注的是通过x射线衍射(XRD)相互空间映射确定的膜弛豫程度与铟含量和InGaN层厚度的函数关系。对于通过X射线衍射测试的结构,发现高达0.15的铟阱分数显示出很少或没有松弛。对于接近0.2的铟阱分数,取决于总层厚,超晶格的弛豫在35%的范围内。铟含量为0.33和0.38的样品的弛豫率接近30%。对于所有超晶格层,如果将SL中的平均铟分数与相同分数的均匀InGaN膜进行比较,则吸收开始时的能量显着降低,因此制造了基于超晶格层的pn光电二极管结构并测试了1- V特性和光谱响应。高铟含量超晶格器件展现出低至-2.3 eV的显着光谱响应范围。但是,I-V行为在正向和反向偏压下都是泄漏的,这与XRD分析非常吻合,XRD分析表明在铟含量较高的SL层中会发生材料弛豫和缺陷产生。 ©20/7美国真空学会。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2011年第3期|p.03C106.1-03C106.6|共6页
  • 作者单位

    Department of Physics, University of Houston, 4800 Calhoun, Houston, Texas 77004 and Integrated Micro Sensors, Inc., 10814 Atwell Dr., Houston, Texas 77096;

    Department of Physics, University of Houston, 4800 Calhoun, Houston, Texas 77004 and Integrated Micro Sensors, Inc., 10814 Atwell Dr., Houston, Texas 77096;

    Integrated Micro Sensors, Inc., 10814 Atwell Dr., Houston, Texas 77096;

    Department of Physics, University of Houston, 4800 Calhoun, Houston, Texas 77004;

    Department of Physics and Electrical and Computer Engineering, University of Houston, 4800 Calhoun,Houston, Texas 77004;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号