首页> 外文期刊>Journal of the American Chemical Society >Alkyl-Substituted Selenium-Bridged V-Shaped Organic Semiconductors Exhibiting High Hole Mobility and Unusual Aggregation Behavior
【24h】

Alkyl-Substituted Selenium-Bridged V-Shaped Organic Semiconductors Exhibiting High Hole Mobility and Unusual Aggregation Behavior

机译:烷基取代的硒 - 桥接V形有机半导体表现出高孔迁移率和异常聚集行为

获取原文
获取原文并翻译 | 示例
       

摘要

Toward the development of high-performance organic semiconductors (OSCs), carrier mobility is the most important requirement for next-generation OSC-based electronics. The strategy is that OSCs consisting of a highly extended π-electron core exhibit two-dimensional (2D) aggregated structures to offer effective charge transport. However, such OSCs, in general, show poor solubility in common organic solvents, resulting in limited solution processability. This is a critical trade-off between the development of OSCs with simultaneous high carrier mobility and suitable solubility. To address this issue, herein, five-membered ring-fused selenium-bridged V-shaped binaphthalene with decyl sub-stituents (C_(10)-DNS-VW) is developed and synthesized by an efficient method. C_(10)-DNS-VW exhibits significantly high solubility for solution processes. Notably, C_(10)-DNS-VW forms a one-dimensional π-stacked packing motif (ID motif) and a 2D herringbone (HB) packing motif (2D motif), depending on the crystal growth condition. On the other hand, the F_(ab)rication of thin films by means of both solution process and vacuum deposition techniques forms only the 2D HB motif. External stress tests such as heating and exposure to solvent vapor indicated that ID and 2D motifs could be synergistically induced by the total balance of intermolecular interactions. Finally, the single-crystalline films of C_(10)- DNS-VW by solution process exhibit carrier mobility up to 11 cm~2 V~(-1) s~(-1) with suitable transistor stability under ambient conditions for more than two months, indicating that C_(10)-DNS-VW is one of the most promising candidates for breaking the trade-off in the field of solution-processed technologies.
机译:朝向高性能有机半导体(OSC)的发展,载流子移动是下一代基于OSC的电子产品的最重要要求。该策略是由高度扩展的π-电子芯组成的OSC表现出二维(2D)聚集结构,以提供有效的电荷运输。然而,通常在普通有机溶剂中显示出差的溶解度,导致溶液加工有限。这是同时高载流动性和合适的溶解度的OSC的开发之间的关键权衡。为了解决该问题,本文中,通过有效的方法开发和合成具有癸基亚溶剂(C_(10)-DNS-VW)的五元环稠合硒 - 桥接的V形二苯甲酸酯。 C_(10)-DNS-VW表现出溶液过程的显着高溶解度。值得注意的是,C_(10)-DNS-VW形成一维π堆叠填充基序(ID图案)和2D人字纹(HB)包装基序(2D基序),这取决于晶体生长条件。另一方面,借助于溶液工艺和真空沉积技术的薄膜的F_(AB)典型仅形成2D HB基序。外部应力测试如加热和暴露于溶剂蒸气,表明ID和2D基序可以通过分子间相互作用的总平衡来协同诱导。最后,通过溶液过程的C_(10) - DNS-VW的单晶膜表现出高达11cm〜2V〜(-1)S〜(-1)的载流子迁移率,在环境条件下具有合适的晶体管稳定性,超过两个月,表明C_(10)-DNS-VW是在解决方案处理技术领域打破权衡的最有希望的候选人之一。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第35期|14974-14984|共11页
  • 作者单位

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8S61 Japan National Institute of Advanced Industrial Science and Technology (AIST)-University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL) AIST Kashiwa Chiba 277-8561 Japan PRESTO JST Kawaguchi Saitama 332-0012 Japan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 lavan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan;

    National Institute of Technology Toyama College Toyama Toyama 939-8630 Japan;

    Department of Applied Physics Faculty of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8573 Japan;

    Department of Physics School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan;

    R1KEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan;

    Chemistry Materials and Bioengineering Major Graduate School of Science and Engineering Kansai University Suita Osaka 564-8680 Japan;

    Chemistry Materials and Bioengineering Major Graduate School of Science and Engineering Kansai University Suita Osaka 564-8680 Japan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan;

    Rigaku Corp. Akishima Tokyo 196-8666 Japan;

    Diffraction & Scattering Division Japan Synchrotron Radiation Research Institute Sayo-gun Hyogo 679-5198 Japan Institute for Integrated Cell-Material Sciences (iCeMS) Kyoto University Kyoto 606-8501 Japan;

    Department of Chemistry and Biotechnology School of Engineering The University of Tokyo Bunkyo-ku Tokyo 113-8656 Japan;

    Material Innovation Research Center (MIRC) and Department of Advanced Materials Science School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan National Institute of Advanced Industrial Science and Technology (AIST)-University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL) AIST Kashiwa Chiba 277- 8561 Japan International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 205-0044 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号