首页> 外文期刊>Journal of testing and evaluation >Monitoring Hole Quality in a Drilling Process Using a Fuzzy Subtractive Clustering-Based System Identification Method
【24h】

Monitoring Hole Quality in a Drilling Process Using a Fuzzy Subtractive Clustering-Based System Identification Method

机译:基于模糊减法聚类的系统辨识方法在钻井过程中监测孔眼质量

获取原文
获取原文并翻译 | 示例

摘要

In this study, a subtractive clustering fuzzy identification method and a Sugeno-type fuzzy inference system are used to monitor the hole quality in a drilling. The model for the hole quality is identified by using the hardness of the workpiece, the cutting speed, and the cutting feed as input data and the hole quality features of hole roughness, roundness error, and oversize error as the output data. The process of model building is carried out by using subtractive clustering in both the input and output spaces. A minimum error model is obtained through exhaustive search of the clustering parameters. The fuzzy model obtained is capable of predicting the hole quality for a given set of inputs (hardness of the workpiece, the cutting speed, and the cutting feed). Therefore, one can predict the quality of the drilled hole for a given set of working parameters. The fuzzy model is verified experimentally using different sets of inputs. This study deals with the experimental results obtained during drilling on medium carbon steel (AISI 1060), aluminum, and brass.
机译:在这项研究中,减法聚类模糊识别方法和Sugeno型模糊推理系统用于监测钻孔的孔质量。孔质量模型是通过将工件的硬度,切削速度和切削进给作为输入数据,并以孔粗糙度,圆度误差和过大误差的孔质量特征作为输出数据来确定的。通过在输入和输出空间中使用减法聚类来执行模型构建的过程。通过对聚类参数进行穷举搜索可获得最小误差模型。获得的模糊模型能够针对给定的一组输入(工件的硬度,切削速度和切削进给量)预测孔的质量。因此,对于给定的一组工作参数,可以预测钻孔的质量。使用不同的输入集通过实验验证了模糊模型。这项研究涉及在中碳钢(AISI 1060),铝和黄铜上钻孔过程中获得的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号