首页> 外文期刊>Journal of testing and evaluation >Reduction of Higher-Order Linear Time-Invariant SISO Continuous Systems to Its Lower-Order Model Employing an Improved Water Swirl Algorithm
【24h】

Reduction of Higher-Order Linear Time-Invariant SISO Continuous Systems to Its Lower-Order Model Employing an Improved Water Swirl Algorithm

机译:利用改进的水涡流算法将高阶线性时不变SISO连续系统简化为低阶模型

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new version of the water swirl algorithm (WSA), namely, improved water swirl algorithm for lower-order model formulation of single-input-single-output (SISO) continuous systems. The WSA is a swarm-based optimization technique that mimics the way by which water finds a drain in a sink. It observes the flowing and searching behavior of water for drains and proposes suitable strength update equations to locate the optimum solution iteratively from the initial randomly generated search space. The strength of a water particle is governed by three components, namely, inertia, a cognitive component, and a social component. In the proposed improved WSA, the cognitive component of a water particle is split into a good-experience component and worst-experience component. Because of the inclusion of the worst-experience component, the particle can bypass the previously visited worst position and try to occupy the best position. A weighted average method is proposed in this paper to reduce the higher-order model formulation to lower-order form. The result shows good performance of the improved WSA in solving SISO continuous system problems, as compared to other existing techniques. The proposed method is illustrated through numerical examples from the literature.
机译:本文提出了一种新的水旋流算法(WSA),即改进的水旋流算法,用于单输入单输出(SISO)连续系统的低阶模型表示。 WSA是基于群的优化技术,它模仿水在水槽中找到排水的方式。它观察了排水用水的流动和搜索行为,并提出了合适的强度更新方程式,以从初始随机生成的搜索空间迭代地找到最佳解。水颗粒的强度由三个成分控制,即惯性,认知成分和社会成分。在提出的改进的WSA中,水颗粒的认知成分被分为良好体验成分和最差体验成分。由于包含了最差的体验成分,粒子可以绕过以前访问的最差位置并尝试占据最佳位置。本文提出了一种加权平均方法,将高阶模型公式化为低阶形式。结果表明,与其他现有技术相比,改进的WSA在解决SISO连续系统问题方面具有良好的性能。通过文献中的数值示例对提出的方法进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号