首页> 外文期刊>The Journal of Systems and Software >Enhancing C/C++ based OSS development and discoverability with CBRJS: A Rust/Node.js/WebAssembly framework for repackaging legacy codebases
【24h】

Enhancing C/C++ based OSS development and discoverability with CBRJS: A Rust/Node.js/WebAssembly framework for repackaging legacy codebases

机译:使用CBRJS增强基于C / C ++的OSS开发和可发现性:用于重新包装旧代码库的Rust / Node.js / WebAssembly框架

获取原文
获取原文并翻译 | 示例

摘要

Since the appearance of the C programming language and later C++, a plethora of libraries have been developed in both languages. Unfortunately, discovering such Open Source Software (OSS) components efficiently is not always an easy task. Nonetheless, recent advancements in OSS technologies present an opportunity to improve the status quo. In this paper, we introduce a prototype framework, which utilizes the Rust and JavaScript programming languages, as well as their respective ecosystems, alongside the WebAssembly state-of-the-art Web standard, for achieving boosted exposure for hard-to-find C/C++ OSS components, by taking advantage of their package discovery and delivery channels. By demonstrating how this system works, we show that this methodology is capable of increasing the exposure of such libraries, and providing a modernized stage for further development and maintenance. Provided metrics exhibit a more than twofold increase in downloads for a re-packaged library, superior discoverability compared to standard public OSS code repositories, as well as evidence that Web browser vendors invest heavily in optimizing the underlying runtime. (C) 2019 Elsevier Inc. All rights reserved.
机译:自从C编程语言和后来的C ++出现以来,已经用这两种语言开发了大量的库。不幸的是,有效地发现这样的开源软件(OSS)组件并不总是一件容易的事。但是,OSS技术的最新进展为改善现状提供了机会。在本文中,我们介绍了一个原型框架,该框架利用Rust和JavaScript编程语言以及它们各自的生态系统,以及WebAssembly最新的Web标准,以提高难于发现的C语言的曝光率。 / C ++ OSS组件,通过利用它们的软件包发现和交付渠道。通过演示该系统的工作方式,我们表明该方法能够增加此类库的使用率,并为进一步的开发和维护提供现代化的舞台。所提供的指标显示,对于重新打包的库而言,下载量增加了两倍以上,与标准的公共OSS代码存储库相比,其可发现性更高,并且有证据表明Web浏览器供应商在优化基础运行时方面投入了大量资金。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号