首页> 外文期刊>Journal of Systems Science and Complexity >AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR
【24h】

AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR

机译:基于递归神经网络的智能控制系统及其在CSTR中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an intelligent control system based on recurrent neural fuzzy network is presented for complex, uncertain and nonlinear processes, in which a recurrent neural fuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neural network based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradient information partial deriv y/partial deriv u for optimizing the parameters of controller. Compared with many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzy controller. Moreover, recursive predictive error algorithm (RPE) is implemented to construct RNNM on line. Lastly, in order to evaluate the performance of the proposed control system, the presented control system is applied to continuously stirre'd tank reactor (CSTR). Simulation comparisons, based on control effect and output error, with general fuzzy controller and feed-forward neural fuzzy network controller (FNFNC), are conducted. In addition, the rates of convergence of RNNM respectively using RPE algorithm and gradient learning algorithm are also compared. The results show that the proposed control system is better for controlling uncertain and nonlinear processes.
机译:本文针对复杂,不确定和非线性过程,提出了一种基于递归神经模糊网络的智能控制系统,其中以递归神经模糊网络为控制器(RNFNC)对过程进行自适应控制,基于递归神经网络的递归神经网络。递归预测误差算法(RNNM)用于估计梯度信息的偏导数/偏导数,以优化控制器的参数。与许多神经模糊控制系统相比,它采用递归神经网络来实现模糊控制器。此外,实现了递归预测误差算法(RPE)以在线构造RNNM。最后,为了评估所提出的控制系统的性能,将所提出的控制系统应用于连续搅拌釜反应器(CSTR)。基于控制效果和输出误差,与通用模糊控制器和前馈神经模糊网络控制器(FNFNC)进行了仿真比较。此外,还比较了分别使用RPE算法和梯度学习算法的RNNM的收敛速度。结果表明,所提出的控制系统较好地控制了不确定和非线性过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号