首页> 外文期刊>Journal of symbolic computation >Subresultants of (x - α)~m and (x - β)~n, Jacobi polynomials and complexity
【24h】

Subresultants of (x - α)~m and (x - β)~n, Jacobi polynomials and complexity

机译:(x - α)〜m和(x-β)〜n,jacobi多项式和复杂性的子系统

获取原文
获取原文并翻译 | 示例

摘要

In an earlier article(Bostan et al., 2017), with Carlos D'Andrea, we described explicit expressions for the coefficients of the order-d polynomial subresultant of (x - alpha)(m) and (x - beta)(n) with respect to Bernstein's set of polynomials {(x - alpha)(j)(x - beta)(d-j), 0 = j = d}, for 0 = d min{m, n}. The current paper further develops the study of these structured polynomials and shows that the coefficients of the subresultants of (x - alpha)(m) and (x - beta)(n) with respect to the monomial basis can be computed in linear arithmetic complexity, which is faster than for arbitrary polynomials. The result is obtained as a consequence of the amazing though seemingly unnoticed fact that these subresultants are scalar multiples of Jacobi polynomials up to an affine change of variables. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在早期的文章中(Bostan等人,2017年)与Carlos d'Andrea,我们描述了(X-alpha)(m)和(x - beta)的order-d多项式子系统的系数的显式表达式(n )关于Bernstein的多项式组{(X-alpha)(j)(x - beta)(dj),0 <= j <= d},对于0 <= d

著录项

  • 来源
    《Journal of symbolic computation》 |2020年第novaadeca期|330-351|共22页
  • 作者单位

    Univ Paris Saclay INRIA 1 Rue Honore dEstienne dOrves F-91120 Palaiseau France;

    Univ Buenos Aires Fac Ciencias Exactas & Nat Dept Matemat CONICET Buenos Aires DF Argentina|Univ Buenos Aires CONICET IMAS Buenos Aires DF Argentina;

    North Carolina State Univ Dept Math Raleigh NC 27695 USA;

    Univ Buenos Aires Fac Ciencias Exactas & Nat Dept Matemat Buenos Aires DF Argentina;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subresultants; Algorithms; Complexity; Jacobi polynomials;

    机译:子节点;算法;复杂性;Jacobi多项式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号