首页> 外文期刊>Journal of symbolic computation >Linear groupoids and the associated wreath products
【24h】

Linear groupoids and the associated wreath products

机译:线性群状体和相关的花圈产品

获取原文
获取原文并翻译 | 示例

摘要

A groupoid identity is said to be linear of length 2k if the same k variables appear on both sides of the identity exactly once. We classify and count all varieties of groupoids defined by a single linear identity. For k = 3, there are 14 nontrivial varieties and they are in the most general position with respect to inclusion. Hentzel et al. [Hentzel, I.R., Jacobs, D.P., Muddana, S.V., 1993. Experimenting with the identity (xy)z = y(zx). J. Symbolic Comput. 16, 289-293] showed that the linear identity (xy)z = y(zx) implies commutativity and associativity in all products of at least five factors. We complete their project by showing that no other linear identity of any length behaves this way, and by showing how the identity (xy)z = y(zx) affects products of fewer than five factors; we include distinguishing examples produced by the finite model builder Mace4. The corresponding combinatorial results for labelled binary trees are given. We associate a certain wreath product with any linear identity. Questions about linear groupoids can therefore be transferred to groups and attacked by group-theoretical computational tools, e.g., GAP. Systematic notation and diagrams for linear identities are devised. A short equational basis for Boolean algebras involving the identity (xy)z — y(zx) is presented, together with a proof produced by the automated theorem prover OTTER.
机译:如果相同的k个变量在同一性的两边恰好出现一次,则称一个类群同一性是长度为2k的线性。我们对由单个线性同一性定义的所有类群进行分类和计数。对于k = 3,有14个非平凡的变体,就包含而言,它们处于最一般的位置。 Hentzel等。 [Hentzel,I.R.,Jacobs,D.P.,Muddana,S.V.,1993。用恒等式(xy)z = y(zx)进行实验。 J.符号计算[16,289-293]表明,线性同一性(xy)z = y(zx)表示在至少五个因子的所有乘积中的可交换性和缔合性。我们通过证明没有其他任何长度的线性恒等式表现出来,并且通过恒等式(xy)z = y(zx)如何影响少于五个因子的乘积来完成他们的项目。我们将包括有限模型生成器Mace4产生的独特示例。给出了带标记的二叉树的相应组合结果。我们将某个花圈产品与任何线性标识相关联。因此,有关线性类群的问题可以转移到组中,并由组理论计算工具(例如GAP)进行攻击。设计了线性标识的系统符号和示意图。给出了包含恒等式(xy)z-y(zx)的布尔代数的简短方程式基础,以及自动定理证明者OTTER产生的证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号