首页> 外文期刊>Journal of supercomputing >Distributed stochastic principal component analysis using stabilized Barzilai-Borwein step-size for data compression with WSN
【24h】

Distributed stochastic principal component analysis using stabilized Barzilai-Borwein step-size for data compression with WSN

机译:使用稳定的Barzilai-Borwein阶梯大小进行分布式随机主成分分析,用于使用WSN数据压缩

获取原文
获取原文并翻译 | 示例

摘要

The popularity of diverse IoT-based applications and services continuously generating tremendous amount of data has revealed the significance of data compression (DC). Principal component analysis (PCA) is one of the most commonly employed algorithms for DC. However, when dealing with large-scale matrices, the standard PCA takes a very long time and requires a lot of memory. Therefore, this paper presents a novel distributed stochastic PCA algorithm (DSPCA) for hierarchical sensor network based on gradient-based adaptive PCA (GA-PCA), where the standard PCA is reformulated as a single-pass stochastic setting to find the direction of approximate maximal variance. The step-size in each iteration is obtained by incorporating the stabilized Barzilai-Borwein method with the gradient optimization. This enables DSPCA to be processed with low computational complexity while maintaining a high convergence speed. Computer simulation with two types of datasets displays that the proposed scheme consistently outperforms the representative DC schemes in terms of reconstruction accuracy of original data and explained variance.
机译:不同的基于物联网的应用程序和服务的普及持续生成巨大数据的巨大数据揭示了数据压缩(DC)的重要性。主成分分析(PCA)是DC最常用的算法之一。但是,在处理大规模矩阵时,标准PCA需要很长时间并且需要大量的内存。因此,本文介绍了一种基于梯度的自适应PCA(GA-PCA)的分层传感器网络的新型分布式随机PCA算法(DSPCA),其中标准PCA被重新重新重新装饰为单通转机设置,以找到近似方向最大方差。通过掺入具有梯度优化的稳定的Barzilai-Borwein方法来获得每次迭代中的阶梯大小。这使得DSPCA能够以低计算复杂性处理,同时保持高收敛速度。具有两种类型数据集的计算机模拟显示所提出的方案在原始数据的重建准确性方面始终如一地占代表直流方案,并解释方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号