首页> 外文期刊>Journal of supercomputing >A selfish herd optimization algorithm based on the simplex method for clustering analysis
【24h】

A selfish herd optimization algorithm based on the simplex method for clustering analysis

机译:一种基于Simplex聚类分析方法的自私群优化算法

获取原文

摘要

Clustering analysis is a popular data analysis technology that has been successfully applied in many fields, such as pattern recognition, machine learning, image processing, data mining, computer vision and fuzzy control. Clustering analysis has made great progress in these fields. The purpose of clustering analysis is to classify data according to their intrinsic attributes such that data that have the same characteristics are in the same class and data that differ are in different classes. Currently, the k-means clustering algorithm is one of the most commonly used clustering methods because it is simple and easy to implement. However, its performance largely depends on the initial solution, and it easily falls into locally optimal solutions during the execution of the algorithm. To overcome the shortcomings of k-means clustering, many scholars have used meta-heuristic optimization algorithms to solve data clustering problems and have obtained satisfactory results. Therefore, in this paper, a selfish herd optimization algorithm based on the simplex method (SMSHO) is proposed. In SMSHO, the simplex method replaces mating operations to generate new prey individuals. The incorporation of the simplex method increases the population diversity of algorithm, thereby improving the global searching ability of algorithm. Twelve clustering datasets are selected to verify the performance of SMSHO in solving clustering problems. The SMSHO is compared with ABC, BPFPA, DE, k-means, PSO, SMSSO and SHO. The experimental results show that SMSHO has faster convergence speed, higher accuracy and higher stability than the other algorithms.
机译:聚类分析是一种流行的数据分析技术,已成功应用于许多领域,例如模式识别,机器学习,图像处理,数据挖掘,计算机视觉和模糊控制。聚类分析在这些领域取得了很大进展。聚类分析的目的是根据其内在属性对数据进行分类,使得具有相同特征的数据在同一类中和不同类别中的数据。目前,K-means聚类算法是最常用的群集方法之一,因为它很简单易于实现。然而,其性能在很大程度上取决于初始解决方案,并且在执行算法期间它很容易陷入局部最佳解决方案。为了克服K-Means聚类的缺点,许多学者使用了Meta-heuristic优化算法来解决数据聚类问题,并获得了令人满意的结果。因此,提出了一种基于Simplex方法(SMSHO)的自私畜群优化算法。在SMSHO中,Simplex方法替换了交配操作以生成新的猎物个人。简单x方法的掺入增加了算法的群体分集,从而提高了全球算法的搜索能力。选择十二个群集数据集以验证SMSHO是否在解决聚类问题方面的性能。将SMSHO与ABC,BPFPA,DE,K-Meanse,PSO,SMSSO和Sho进行比较。实验结果表明,SMSHO具有更快的收敛速度,更高的精度和比其他算法更高的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号