首页> 外文学位 >Scalable clustering algorithms and optimization methods for parallel architectures.
【24h】

Scalable clustering algorithms and optimization methods for parallel architectures.

机译:并行体系结构的可伸缩群集算法和优化方法。

获取原文
获取原文并翻译 | 示例

摘要

Clustering algorithms provide a way to analyze and understand huge amount of data that is present and evolving today in various areas such as sciences, engineering, marketing, finance, etc. Although numerous serial clustering approaches have been developed, only few of them are viable nowadays given algorithm complexities and sizes of problems. The focus of this dissertation are the parallel optimization methods and tuning techniques that will enable the computing society to perform clustering of massive data on shared memory parallel architectures.;The first part of the dissertation investigates clustering methods and their parallel optimization for data represented by coordinates on a two-dimensional Cartesian plane. These clustering methods are based on the well-known plane sweep algorithm that scans a coordinate plane with a goal to find intersections of the rectangles. The applications of these algorithms find their places in earth surface processing, very large scale integration (VLSI) design and military surveillance, just to cite a few. The contribution presented in this dissertation is a simple and highly scalable plane sweep algorithm named Scan-List (SL). Despite this method having a higher order of sequential operation complexity than other well-known serial algorithms, its scalability allows it to surpass those algorithms when run in parallel. This algorithm is profiled against the best-known plane sweep method and was applied to tests generated using industrial Electronic physical design automation (EDA) tools.;The second part illustrates clustering methods focused on data represented as network systems or graphs with node and edge sets. The practical applications of graph clustering algorithms are nowadays popular social networks, biological research, marketing and financial products. The methodology presented in this thesis investigates and filters only those clustering algorithms that produce acceptable qualities while being low complexity methods and are capable on working with massive data. A well-known Label propagation algorithm (LPA) is characterized to be a unique algorithm that meets the requirements and in addition is capable of efficient scaling on shared memory parallel architectures. The present deficiencies of LPA are addressed to achieve the linear scalability on a conventional shared memory IntelRTM Xeon architecture. IntelRTM Xeon Phi (Phi) Label Propagation algorithm (PLPA) is presented. PLPA is the first community detection algorithm implemented on a Phi that is a novel many integrated core architecture. PLPA is fully scalable up to 32 cores and achieves above 100 speedup on Phi with a maximum of 56 cores and 224 hardware threads while maintaining the quality of detected communities. The analysis as to why the speedup is limited by the Phi hardware, and how this shall be resolved in the next generation of MIC based products is provided. The existing possibilities to utilize Phi on massive networks that cannot fully fit in a limited capacity Phi memory are illustrated. A PLPA extension, a modified Phi based LP algorithm PLPA-M to utilize Phi on a network with billions of edges is presented and the scalability analysis is provided. Future opportunities for massively parallel processing of networks using LPA on Phi (multiple cards) and other architectures are analyzed. We provide heuristics for hybrid LPA implementations that would enable LPA on next more advanced generation of heterogeneous Phi platforms and distributed types of architectures. Finally, we provide initial empirical work and set a base for future research.
机译:聚类算法提供了一种方法来分析和理解当今在科学,工程,市场营销,金融等各个领域中正在发展的大量数据。尽管已经开发了许多串行聚类方法,但如今只有少数几种可行给定算法的复杂性和问题的大小。本文的重点是并行优化方法和调优技术,使计算社会能够在共享内存并行体系结构上对海量数据进行聚类。论文的第一部分研究了聚类方法及其对以坐标表示的数据的并行优化。在二维笛卡尔平面上。这些聚类方法基于众所周知的平面扫描算法,该算法扫描目标物体的坐标平面以查找矩形的交点。这些算法的应用在地表处理,超大规模集成(VLSI)设计和军事监视中占有一席之地。本文提出的贡献是一种简单且高度可扩展的平面扫描算法,称为扫描列表(Scan-List)。尽管此方法比其他众所周知的串行算法具有更高的顺序运算复杂度,但其可扩展性使其在并行运行时可以超越那些算法。该算法针对最著名的平面扫描方法进行了剖析,并应用于使用工业电子物理设计自动化(EDA)工具生成的测试。第二部分说明了聚类方法,这些聚类方法主要针对表示为网络系统或具有节点和边集的图形的数据。图聚类算法的实际应用是当今流行的社交网络,生物学研究,市场营销和金融产品。本文提出的方法仅研究和过滤那些产生可接受质量而又是低复杂度方法并且能够处理海量数据的聚类算法。众所周知的标签传播算法(LPA)具有独特的算法,既可以满足要求,又可以在共享内存并行体系结构上高效扩展。解决了LPA当前的不足,以在常规共享内存IntelRTM Xeon架构上实现线性可伸缩性。提出了IntelRTM Xeon Phi(Phi)标签传播算法(PLPA)。 PLPA是在Phi上实现的第一个社区检测算法,该算法是一种新颖的许多集成核心体系结构。 PLPA可以完全扩展到32个内核,并在Phi上以最多56个内核和224个硬件线程的速度达到100以上的速度,同时保持检测到的社区的质量。提供了有关为何加速受Phi硬件限制以及在下一代基于MIC的产品中应如何解决的分析。说明了无法在容量有限的Phi内存中完全容纳的大规模网络上使用Phi的现有可能性。提出了PLPA扩展,基于Phi的改进的LP算法PLPA-M,以在具有数十亿边缘的网络上利用Phi,并提供了可伸缩性分析。分析了在Phi(多卡)和其他体系结构上使用LPA进行网络大规模并行处理的未来机会。我们为混合LPA实现提供启发式功能,这将使LPA能够用于下一代更高级的异构Phi平台和分布式体系结构。最后,我们提供了初步的经验工作,并为将来的研究奠定了基础。

著录项

  • 作者

    Khlopotine, Andrei B.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号