首页> 外文会议>Parallel computing technologies >Solution of Large-Scale Problems of Global Optimization on the Basis of Parallel Algorithms and Cluster Implementation of Computing Processes
【24h】

Solution of Large-Scale Problems of Global Optimization on the Basis of Parallel Algorithms and Cluster Implementation of Computing Processes

机译:基于并行算法和计算过程的集群实现的全局优化大规模问题的求解

获取原文
获取原文并翻译 | 示例

摘要

The parallel hybrid inverse neural network coordinate approximations algorithm (PHINNCA) for solution of large-scale global optimization problems is proposed in this work. The algorithm maps a trial value of an objective function into values of objective function arguments. It decreases a trial value step by step to find a global minimum. Dual generalized regression neural networks are used to perform the mapping. The algorithm is intended for cluster systems. A search is carried out concurrently. When there are multiple processes, they share the information about their progress and apply a simulated annealing procedure to it.
机译:本文提出了一种用于解决大规模全局优化问题的并行混合逆神经网络坐标逼近算法(PHINNCA)。该算法将目标函数的试验值映射到目标函数自变量的值。它会逐步降低试验值以找到全局最小值。对偶广义回归神经网络用于执行映射。该算法适用于集群系统。同时进行搜索。当有多个过程时,他们共享有关其进度的信息,并对其应用模拟退火过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号