首页> 外文期刊>Engineering Applications of Artificial Intelligence >A simplex method-based social spider optimization algorithm for clustering analysis
【24h】

A simplex method-based social spider optimization algorithm for clustering analysis

机译:基于单纯形法的社会蜘蛛优化算法的聚类分析

获取原文
获取原文并翻译 | 示例

摘要

Clustering is a popular data-analysis and data-mining technique that has been addressed in many contexts and by researchers in many disciplines. The K-means algorithm is one of the most popular clustering algorithms because of its simplicity and easiness in application. However, its performance depends strongly on the initial cluster centers used and can converge to local minima. To overcome these problems, many scholars have attempted to solve the clustering problem using meta-heuristic algorithms. However, as the dimensionality of a search space and the data contained within it increase, the problem of local optima entrapment and poor convergence rates persist; even the efficiency and effectiveness of these algorithms are often unacceptable. This study presents a simplex method-based social spider optimization (SMSSO) algorithm to overcome the drawbacks mentioned above. The simplex method is a stochastic variant strategy that increases the diversity of a population while enhancing the local search ability of the algorithm. The application of the proposed algorithm on a data-clustering problem using eleven benchmark datasets confirms the potential and effectiveness of the proposed algorithm. The experimental results compared to the K-means technique and other state-of-the-art algorithms show that the SMSSO algorithm outperforms the other algorithms in terms of accuracy, robustness, and convergence speed.
机译:聚类是一种流行的数据分析和数据挖掘技术,已在许多情况下以及许多学科的研究人员中得到了解决。由于K-means算法的简单性和易用性,它是最受欢迎的聚类算法之一。但是,其性能在很大程度上取决于最初使用的群集中心,并且可以收敛到局部最小值。为了克服这些问题,许多学者尝试使用元启发式算法来解决聚类问题。但是,随着搜索空间的维数和其中包含的数据的增加,局部最优约束和收敛速度不佳的问题依然存在。甚至这些算法的效率和有效性通常也不可接受。这项研究提出了一种基于单纯形方法的社交蜘蛛优化(SMSSO)算法,以克服上述缺点。单纯形法是一种随机变异策略,它在增强算法的局部搜索能力的同时,增加了种群的多样性。所提出的算法在使用11个基准数据集的数据聚类问题上的应用证实了所提出算法的潜力和有效性。与K-means技术和其他最新算法相比,实验结果表明,SMSSO算法在准确性,鲁棒性和收敛速度方面优于其他算法。

著录项

  • 来源
  • 作者单位

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China,Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning, China;

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China,School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China,Beijing Engineering Applications Research Center of High Volume Language Information Processing and Cloud Computing (Beijing Institute of Technology), Beijing, China;

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China,Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning, China;

    Faculty of Computers and Informatics, Zagazig University, Head of Department of Operations Research, Egypt;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Benchmark datasets; Clustering analysis; Meta-heuristic algorithm; Simplex method; Social-spider optimization algorithm;

    机译:基准数据集;聚类分析;元启发式算法;单纯形法;社交蜘蛛优化算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号