首页> 外文期刊>Journal of supercomputing >Traffic classification for efficient load balancing in server cluster using deep learning technique
【24h】

Traffic classification for efficient load balancing in server cluster using deep learning technique

机译:使用深度学习技术的服务器集群中有效负载平衡的流量分类

获取原文
获取原文并翻译 | 示例

摘要

Extensive use of multimedia services and Internet Data Center applications demand distributed deployment of these applications. It is implemented using edge computing with server clusters. To increase the availability of the services, applications are deployed redundantly in server clusters. In this situation, an efficient server allocation strategy is essential to improve execution fairness in server cluster. Categorizing the incoming traffic at server cluster is desired for the improvement of QoS. The traditional traffic classification models categorize the incoming traffic according to their applications' type. They are ineffective in selection of suitable server, as they do not consider the characteristics of the server. Hence this paper proposes a classifier to assist the dispatcher to distribute the requests to appropriate server in server cluster. The proposed deep learning classification model based on incoming traffic characteristics and server status is reinforced with extended labelling using correlation based approach. The experimental results of the proposed classifier have shown considerable performance enhancement in terms of classification measures and waiting time of the requests compared to existing machine learning models.
机译:广泛使用多媒体服务和Internet数据中心应用程序需求分布式部署这些应用程序。它是使用与服务器群集的边缘计算实现的。为了提高服务的可用性,应用程序在服务器集群中冗余部署。在这种情况下,有效的服务器分配策略对于提高服务器群集中的执行公平至关重要。为了改进QoS,需要对服务器群集的传入流量进行分类。传统的流量分类模型根据其应用程序类型对传入流量进行分类。它们在选择合适的服务器时无效,因为它们不考虑服务器的特性。因此,本文提出了一个分类器,以帮助调度程序将请求分发到服务器集群中的适当服务器。利用基于相关方法的扩展标签,加强了基于传入流量特性和服务器状态的基于传入流量特性和服务器状态的建议的深度学习分类模型。与现有机器学习模型相比,所提出的分类器的实验结果表明了对请求的分类措施和等待时间的相当大的性能增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号