首页> 外文期刊>Journal of supercomputing >Toward efficient execution of data-intensive workflows
【24h】

Toward efficient execution of data-intensive workflows

机译:有效地执行数据密集型工作流程

获取原文
获取原文并翻译 | 示例

摘要

Workflows that consume and produce large amounts of data are being widely used in modern scientific computing and data processing pipelines. Scheduling of data-intensive workflows requires a careful management of data transfers between tasks, since network contention can significantly impact the workflow execution time. The paper presents and evaluates several scheduling algorithms, data transfer strategies and optimizations aimed at efficient execution of data-intensive workflows. The studied approaches reduce or completely avoid network contention by explicit scheduling of data transfers and incorporate several optimizations, such as data caching, chunked and peer-to-peer data transfers. The results of experimental study demonstrate that the relative performance of different approaches depends on the workflow properties, data staging strategy and system configuration. The proposed CAS-L1 heuristic with additional data transfer optimizations achieves the best results.
机译:消耗和产生大量数据的工作流程在现代科学计算和数据处理管道中被广泛应用于广泛应用。 数据密集型工作流程的调度需要仔细管理任务之间的数据传输,因为网络争用可以显着影响工作流执行时间。 本文介绍并评估了若干调度算法,数据传输策略和优化,旨在有效地执行数据密集型工作流程。 研究方法通过显式调度数据传输并结合多种优化,例如数据缓存,块和对等数据传输,缩短或完全避免网络争用。 实验研究结果表明,不同方法的相对性能取决于工作流程属性,数据分期策略和系统配置。 具有额外数据传输优化的提议的CAS-L1启发式达到了最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号