首页> 外文期刊>Journal of supercomputing >Sampling-based visual assessment computing techniques for an efficient social data clustering
【24h】

Sampling-based visual assessment computing techniques for an efficient social data clustering

机译:基于采样的视觉评估计算技术,用于高效的社交数据集群

获取原文
获取原文并翻译 | 示例

摘要

Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods.
机译:可视化方法用于预群集评估和有用的群集分区。现有的视觉方法,例如视觉评估趋势(VAT),谱增值税(SPECVAT),基于余弦的增值税(CVAT)和多视点基于基于余弦的相似性VAT(MVS-VAT),有效地评估了关于数量的知识集群或群集趋势。 Tweets数据分区是社交数据聚类问题的基础。基于余弦的视觉方法在文本数据群集中取得广泛。因此,CVAT和MVS-VAT是衍生社会数据集群的最适合的方法。然而,MVS-VAT在计算时间和内存分配方面面临着可扩展性问题的问题。因此,本文介绍了基于采样的MVS-VAT计算技术,以克服社交数据群集中的可伸缩性问题来选择样本群集视点。标准健康关键字和基准测试TREC2017和TREC2018健康关键字在实验中提取健康推文,用于说明现有和提出的视觉方法之间的性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号