首页> 外文期刊>Distributed and Parallel Databases >An efficient sampling-based visualization technique for big data clustering with crisp partitions
【24h】

An efficient sampling-based visualization technique for big data clustering with crisp partitions

机译:基于高数据聚类的基于比较的可视化技术

获取原文
获取原文并翻译 | 示例

摘要

The data cluster tendency is an emerging need for exploring the big data cluster analysis tasks. The data are evaluated based on the number of clusters is known as cluster tendency. Many visualization techniques have been developed for the detection of cluster tendency. Some of the existing techniques include Visual Assessment Tendency (VAT), spectral-based VAT (SpecVAT), and improved VAT (iVAT), are considerably succeeded for an assessment of cluster tendency for small datasets. A bigVAT is another method that was recently developed for the estimation of cluster tendency of big data. It is perfect for deriving the clustering tendency in visual form for big data. However, it is intractable to explore the data clusters for large volumes of data objects. The proposed work addresses the clustering problem of bigVAT with the derivation of sampling-based crisp partitions. The crisp partitions will accurately predict the cluster labels of data objects. This research is based on big synthetic and big real-life datasets for demonstrating the performance efficiency of the proposed work.
机译:数据集群趋势是探索大数据集群分析任务的新兴需求。基于群集的数量称为集群趋势来评估数据。已经开发了许多可视化技术用于检测集群趋势。一些现有技术包括视觉评估趋势(VAT),基于光谱的VAT(SPECVAT)和改进的VAT(IVAT),用于评估小型数据集的集群趋势。 BigVat是最近开发的用于估计大数据的集群趋势的另一种方法。它非常适合在视觉形式中导出聚类趋势以获得大数据。但是,探索大量数据对象的数据群集是棘手的。拟议的工作解决了基于采样的清晰分区的推导来解决BigVat的聚类问题。 CRISP分区将准确地预测数据对象的集群标签。本研究基于大型合成和大型实际数据集,用于展示所提出的工作的性能效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号