首页> 外文期刊>Journal of supercomputing >PCVM.ARIMA: predictive consolidation of virtual machines applying ARIMA method
【24h】

PCVM.ARIMA: predictive consolidation of virtual machines applying ARIMA method

机译:PCVM.ARIMA:应用ARIMA方法的虚拟机的预测整合

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing adopts virtualization technology, including migration and consolidation of virtual machines, to overcome resource utilization problems and minimize energy consumption. Most of the approaches have focused on minimizing the number of physical machines and rarely have devoted attention to minimizing the number of migrations. They also decide based on the current resources utilization without considering the demand for resources in the future. Some approaches minimize the number of active physical machines and Service Level Agreement (SLA) violations with the number of unnecessary migrations. They consider the current resource utilization of physical machines and neglect from demands for future resource requirements. As a result, as time passes, the number of unnecessary migrations, and subsequently, the rate of SLA violations in data centers increases. Alternatively, several approaches only focus on a hardware level and reduce the physical machine's dynamic power consumption. The lack of control over the overload of physical machines increases the amount of violation. In this paper, a framework called PCVM.ARIMA is presented that focuses on the dynamic consolidation of virtual machines over the minimum number of physical machines, minimize the number of unnecessary migrations, detect the physical machine overloading, and SLA based on the ARIMA prediction model. Moreover, the Dynamic Voltage and Frequency Scaling (DVFS) technique is used to apply the optimal frequency to heterogeneous physical machines. The experimental results show that the presented framework significantly reduces energy consumption while it improves the QoS factors in comparison to some baseline methods.
机译:云计算采用虚拟化技术,包括迁移和整合虚拟机,克服资源利用问题并最大限度地减少能耗。大多数方法都专注于最小化物理机器的数量,很少致力于最小化迁移次数。他们还根据目前的资源利用而决定,而不考虑未来资源的需求。一些方法最小化有源物理机器和服务级别协议(SLA)违反不必要迁移的数量。他们考虑目前物理机器的资源利用,忽视未来资源要求的需求。结果,随着时间的推移,不必要的迁移的数量,随后,数据中心中的SLA违规的速率增加。或者,几种方法仅关注硬件级别并降低物理机器的动态功耗。对物理机器过载的控制缺乏控制增加了违规的数量。在本文中,提出了一个名为PCVM.Arima的框架,其专注于虚拟机的动态整合在最小的物理机器上,最大限度地减少了不必要的迁移的数量,检测物理机器过载,以及基于Arima预测模型的SLA 。此外,动态电压和频率缩放(DVFS)技术用于将最佳频率应用于异构物理机器。实验结果表明,呈现的框架显着降低了能量消耗,同时改善了与某些基线方法相比的QoS因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号