首页> 外文期刊>Journal of supercomputing >Intelligent fault detection using raw vibration signals via dilated convolutional neural networks
【24h】

Intelligent fault detection using raw vibration signals via dilated convolutional neural networks

机译:智能故障检测使用原始振动信号通过扩张卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Fault detection and diagnosis is critical to improve the reliability and availability in induction motors (IMs). Machine learning and deep learning techniques have been widely used in induction motor fault detection and diagnosis. In this paper, we propose a new deep learning model based on a dilated convolutional neural network (D-CNN) for detecting bearing faults in IMs. The proposed model works directly on raw vibration signals without any hand-crafted feature extraction process. Our model can incorporate global context without losing important local information by stacking dilated convolutions with an increasing width. Numerical results show that the proposed D-CNN is not only capable of classifying normal signals perfectly but also can achieve higher accuracy than conventional techniques under noisy environments.
机译:故障检测和诊断对于提高感应电动机(IMS)中的可靠性和可用性至关重要。机器学习和深度学习技术已广泛用于感应电机故障检测和诊断。在本文中,我们提出了一种基于扩张卷积神经网络(D-CNN)的新型深度学习模型,用于检测IMS中的轴承故障。该模型直接在原始振动信号上工作,没有任何手工制作的特征提取过程。我们的模型可以通过堆叠扩张的卷积的宽度堆放扩张的卷曲来包含全局上下文而不会丢失重要的本地信息。数值结果表明,所提出的D-CNN不仅能够完美地对正常信号进行分类,而且可以在噪声环境下的传统技术实现更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号