首页> 外文期刊>Journal of supercomputing >Derivative-based band clustering and multi-agent PSO optimization for optimal band selection of hyper-spectral images
【24h】

Derivative-based band clustering and multi-agent PSO optimization for optimal band selection of hyper-spectral images

机译:基于衍生的频段聚类和多代理PSO优化,用于超光谱图像的最佳频带选择

获取原文
获取原文并翻译 | 示例

摘要

Images (HSIs) are popular in diversified applications, such as geosciences, biomedical imaging, molecular biology, agriculture, astronomy, food quality and safety assessment, surveillance and physics-related research. The rich spatial and spectral information of HSI is the key factors for robust representation of class-specific objects, in remote sensing applications. But, these images often suffer from Hughes effect. This effect causes the recording of information about a single scene in multiple spectral bands. This demands a dimensionality reduction step, which can either be a feature reduction/extraction or a feature selection. The feature selection process is commonly called band selection (BS) in the HS data set. The current study proposes an unsupervised BS technique, which is accomplished in three steps, including preprocessing of spectral bands, adjacent band clustering, and multi-agent optimization. Spatio-spectral (using a simple Gaussian filter) information is extracted to evaluate the performance using SVM classifier with different state-of-the-art band selection approaches. The performance of the proposed approach is evaluated for metrics including overall accuracy (OA), average accuracy (AA) and Kappa (kappa). The experimental results are promising as these surpass that of other approaches.
机译:图像(HSIS)在多样化应用中受欢迎,如地质,生物医学成像,分子生物学,农业,天文学,食品质量和安全评估,监测和物理相关研究。 HSI的丰富空间和光谱信息是遥感应用中的类特定对象的鲁棒表示的关键因素。但是,这些图像经常遭受Hughes效应。这种效果导致在多个光谱频带中记录关于单个场景的信息。这需要维度降低步骤,其可以是特征减少/提取或特征选择。特征选择过程通常称为HS数据集中的频带选择(BS)。目前的研究提出了一种无监督的BS技术,其在三个步骤中完成,包括光谱带的预处理,相邻的频带聚类和多代理优化。提取时空(使用简单的高斯滤波器)信息以评估使用具有不同现实频带选择方法的SVM分类器的性能。评估所提出的方法的性能,对包括总体精度(OA),平均精度(AA)和Kappa(Kappa)的度量。实验结果很有希望,因为这些越野的其他方法都超过了其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号