首页> 外文期刊>Journal of supercomputing >An effective non-cooperative iris recognition system using hierarchical collaborative representation-based classification
【24h】

An effective non-cooperative iris recognition system using hierarchical collaborative representation-based classification

机译:一种有效的非合作虹膜识别系统,使用基于分层协作表示的分类

获取原文
获取原文并翻译 | 示例

摘要

In recent years, non-cooperative iris recognition has gained a major role in biometric authentication system. However, owing to images captured in non-cooperative environments, it is quite a difficult job, for these images have specular reflections, blur, occlusions, and are off-axis. This research introduces an efficient non-cooperative iris recognition system developed for hierarchical collaborative representation-based classifier (HCRC). The proposed method includes three stages. The first stage involves image preprocessing. Initially, hybrid median filtering is done to reduce noise and to improve the image quality. Then, segmentation of the abnormal non-cooperative iris image is carried out by applying Geodesic Region-based Active Contour Level-set algorithm and threshold-based segmentation algorithm. In the second stage, 2 x 2 block-based Local Ternary Pattern (LTP) is applied to the segmented image. This gives upper and lower LTP histogram blocks. The final feature vector is obtained by combining these two blocks. In the third stage, the feature vectors are applied to the HCRC for classification on the basis of the iris database. The proposed iris recognition technique proved itself by achieving 98.60, 0.095 and 0.096 accuracy, false acceptance rate and false rejection rate, respectively.
机译:近年来,非合作虹膜识别在生物识别认证系统中取得了重要作用。然而,由于在非协作环境中捕获的图像,这是非常困难的工作,对于这些图像具有镜面反射,模糊,闭塞,并且是偏离轴。本研究介绍了一种为基于分层协作表示的分类器(HCRC)开发的有效的非合作虹膜识别系统。所提出的方法包括三个阶段。第一阶段涉及图像预处理。最初,进行混合中值滤波以减少噪声并提高图像质量。然后,通过应用基于测地区的有源轮廓水平集合算法和基于阈值的分割算法来执行异常非协作虹膜图像的分割。在第二阶段,将2×2基于块的局部三元图案(LTP)应用于分段图像。这提供了上下LTP直方图块。通过组合这两个块来获得最终特征向量。在第三阶段,特征向量基于虹膜数据库应用于HCRC进行分类。所提出的虹膜识别技术分别通过实现98.60,0.095和0.096准确,假验收率和假拒绝率来证明自己。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号