首页> 外文期刊>Journal of supercomputing >A proposed method for the improvement in biometric facial image recognition using document-based classification
【24h】

A proposed method for the improvement in biometric facial image recognition using document-based classification

机译:使用基于文档的分类改进生物识别面部图像识别的提出方法

获取原文
获取原文并翻译 | 示例

摘要

This paper mainly focuses on improving the recognition rate and reducing the recognition time in facial image recognition application. The existing methods are based on statistical or neural network or fuzzy-based feature extraction. In this study, the feature extraction followed by classification method is carried out based on documentation-based approach called bag of visual words (BOVW). In BOVW method, the feature vectors were extracted on the basis of scale invariant feature transform (SIFT) and classified by support vector machine (SVM). In train 50% and test 50% strategy, four standard face databases were tested with BOVW documentation approach. For the face databases such as Our Databases of Face Research Lab (ORL), Surveillance, Yale, Face recognition technology (FERET), this method produced 98, 82, 89.33, and 97.9798% of recognition rate, respectively. In the leave-one-out strategy, nine standard face databases were tested. The BOVW method gave 100% of recognition rate for face databases such as Cohn-Kanade (CK+), Georgia Tech, Morphological, Surveillance, Yale and YaleB, whereas it gave 99.772% of recognition rate for ORL and 97.9798% for FERET face databases. Our choice of BOVW+ SVM is a better approach to increase classification rate and also reduce recognition time.
机译:本文主要侧重于提高识别率并降低面部图像识别应用中的识别时间。现有方法基于统计或神经网络或基于模糊的特征提取。在该研究中,基于基于文档的方法进行了分类方法的特征提取,称为视觉词袋(BOVW)。在BOVW方法中,在规模不变特征变换(SIFT)的基础上提取特征向量,并由支持向量机(SVM)进行分类。在火车50%和测试50%战略中,用BOVW文档方法测试了四个标准面部数据库。对于面部数据库,如我们的面部研究实验室(ORL),监视,耶鲁,面部识别技术(FIRET),这种方法分别产生了98,82,89.33和97.9798%的识别率。在休假策略中,测试了九个标准面部数据库。 BOVW方法为Cohn-Kanade(CK +),格鲁吉亚技术,形态学,监视,耶鲁和YaleB等面部数据库提供了100%的识别率,而耶鲁和yaleb则为29.772%的识别率为97.9798%。我们选择的BOVW + SVM是提高分类率的更好方法,并降低识别时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号