首页> 外文期刊>Journal of supercomputing >Towards efficient XML parsing through minimization of JVM parameter space
【24h】

Towards efficient XML parsing through minimization of JVM parameter space

机译:通过最小化JVM参数空间来实现高效的XML解析

获取原文
获取原文并翻译 | 示例

摘要

A significant increase in the usage of Extensible Markup Language (XML) data for various protocols and standards emphasizes the development of efficient XML parsers. For the Java language, the XML DOM parser despite performing in-memory operations is unable to achieve peak execution performance on modern systems, especially for parsing large XML files. The issue of inefficient execution may be mitigated by selecting appropriate runtime parameters for the Java Virtual Machine (JVM). This entails to exploring parameter space in an exhaustive manner that is not practically feasible for rapid application development. This paper aims at performance enhancement of XML parsing through selection of optimal set of JVM runtime parameters. The proposed approach works independent of parser design. It reduces JVM parameter space through machine learning-based models which are trained using profile data. The impact of parameters is determined using linear regression and artificial neural network-based models. The subsequent computation of a location-based weight vector along with a threshold value for filtration of parameters generates a set of optimal parameters for performance enhancement. The XML parsing code using the optimal parameters achieves average speedups of 13.18% and 21.42% over the standard code on Intel Xeon and Intel Core i7-based systems, respectively.
机译:用于各种协议和标准的可扩展标记语言(XML)数据的使用率显着增加,强调了有效的XML解析器的开发。对于Java语言,XML DOM Parser尽管执行内存操作,但无法在现代系统上实现高峰执行性能,尤其是解析大型XML文件。可以通过为Java虚拟机(JVM)选择适当的运行时参数来缓解低效执行问题。这需要以详尽的方式探索参数空间,这些方式对于快速应用程序开发并不实际上可行。本文旨在通过选择最优JVM运行时参数进行XML解析的性能增强。建议的方法与解析器设计无关。它通过使用配置文件数据训练的基于机器学习的基于机器学习的模型来减少JVM参数空间。使用基于线性回归和人工神经网络的模型来确定参数的影响。随后的基于位置的权重向量的计算以及用于过滤参数的阈值生成一组用于性能增强的最佳参数。使用最佳参数的XML解析码分别在英特尔Xeon和英特尔核心I7的系统上的标准代码中实现了13.18%和21.42%的平均速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号