首页> 外文期刊>Journal of supercomputing >Towards efficient XML parsing through minimization of JVM parameter space
【24h】

Towards efficient XML parsing through minimization of JVM parameter space

机译:通过最小化JVM参数空间实现有效的XML解析

获取原文
获取原文并翻译 | 示例

摘要

A significant increase in the usage of Extensible Markup Language (XML) data for various protocols and standards emphasizes the development of efficient XML parsers. For the Java language, the XML DOM parser despite performing in-memory operations is unable to achieve peak execution performance on modern systems, especially for parsing large XML files. The issue of inefficient execution may be mitigated by selecting appropriate runtime parameters for the Java Virtual Machine (JVM). This entails to exploring parameter space in an exhaustive manner that is not practically feasible for rapid application development. This paper aims at performance enhancement of XML parsing through selection of optimal set of JVM runtime parameters. The proposed approach works independent of parser design. It reduces JVM parameter space through machine learning-based models which are trained using profile data. The impact of parameters is determined using linear regression and artificial neural network-based models. The subsequent computation of a location-based weight vector along with a threshold value for filtration of parameters generates a set of optimal parameters for performance enhancement. The XML parsing code using the optimal parameters achieves average speedups of 13.18% and 21.42% over the standard code on Intel Xeon and Intel Core i7-based systems, respectively.
机译:对于各种协议和标准,可扩展标记语言(XML)数据的使用量的显着增加强调了有效XML解析器的发展。对于Java语言,尽管执行了内存中操作,但XML DOM解析器无法在现代系统上实现最高的执行性能,尤其是在解析大型XML文件时。通过为Java虚拟机(JVM)选择适当的运行时参数,可以缓解执行效率低下的问题。这需要以详尽的方式探索参数空间,这对于快速的应用程序开发实际上是不可行的。本文旨在通过选择最佳的JVM运行时参数集来提高XML解析的性能。所提出的方法与解析器设计无关。它通过使用概要文件数据训练的基于机器学习的模型来减少JVM参数空间。使用线性回归和基于人工神经网络的模型确定参数的影响。基于位置的权重矢量的后续计算以及用于过滤参数的阈值会生成一组用于性能增强的最佳参数。使用最佳参数的XML解析代码分别比基于Intel Xeon和基于Intel Core i7的系统上的标准代码平均提高了13.18%和21.42%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号