首页> 外文期刊>Journal of supercomputing >Using Arm's scalable vector extension on stencil codes
【24h】

Using Arm's scalable vector extension on stencil codes

机译:在模板代码上使用Arm的可伸缩矢量扩展

获取原文
获取原文并翻译 | 示例

摘要

Data-level parallelism is frequently ignored or underutilized. Achieved through vector/SIMD capabilities, it can provide substantial performance improvements on top of widely used techniques such as thread-level parallelism. However, manual vectorization is a tedious and costly process that needs to be repeated for each specific instruction set or register size. In addition, automatic compiler vectorization is susceptible to code complexity, and usually limited due to data and control dependencies. To address some of these issues, Arm recently released a new vector ISA, the scalable vector extension (SVE), which is vector-length agnostic (VLA). VLA enables the generation of binary files that run regardless of the physical vector register length. In this paper, we leverage the main characteristics of SVE to implement and optimize stencil computations, ubiquitous in scientific computing. We show that SVE enables easy deployment of textbook optimizations like loop unrolling, loop fusion, load trading or data reuse. Our detailed simulations using vector lengths ranging from 128 to 2048 bits show that these optimizations can lead to performance improvements over straightforward vectorized code of up to 1.57x In addition, we show that certain optimizations can hurt performance due to reduced arithmetic intensity and instruction overheads, and provide insight useful for compiler optimizers.
机译:数据级并行性经常被忽略或利用不足。通过矢量/ SIMD功能可以实现,它可以在广泛使用的技术(例如线程级并行性)的基础上显着提高性能。但是,手动向量化是一个繁琐且昂贵的过程,需要针对每个特定的指令集或寄存器大小重复进行。另外,自动编译器矢量化容易受到代码复杂性的影响,并且通常由于数据和控件的依赖性而受到限制。为了解决其中的一些问题,Arm最近发布了新的矢量ISA,即可伸缩矢量扩展(SVE),它是矢量长度不可知的(VLA)。 VLA使生成的二进制文件均可运行,而与物理矢量寄存器的长度无关。在本文中,我们利用SVE的主要特征来实现和优化模版计算,这在科学计算中很普遍。我们展示了SVE可以轻松部署教科书优化,例如循环展开,循环融合,负载交易或数据重用。我们对向量长度范围从128到2048位的详细仿真显示,这些优化可以使性能提高到高达1.57x的简单矢量化代码之外。此外,我们表明某些优化可能会由于降低算术强度和指令开销而损害性能,并提供对编译器优化器有用的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号