首页> 外文期刊>Journal of Real-Time Image Processing >Fast deep neural networks for image processing using posits and ARM scalable vector extension
【24h】

Fast deep neural networks for image processing using posits and ARM scalable vector extension

机译:使用POSITS和ARM可伸缩矢量扩展的图像处理的快速深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

With the advent of image processing and computer vision for automotive under real-time constraints, the need for fast and architecture-optimized arithmetic operations is crucial. Alternative and efficient representations for real numbers are starting to be explored, and among them, the recently introduced positTM number system is highly promising. Furthermore, with the implementation of the architecture-specific mathematical library thoroughly targeting single-instruction multiple-data (SIMD) engines, the acceleration provided to deep neural networks framework is increasing. In this paper, we present the implementation of some core image processing operations exploiting the posit arithmetic and the ARM scalable vector extension SIMD engine. Moreover, we present applications of real-time image processing to the autonomous driving scenario, presenting benchmarks on the tinyDNN deep neural network (DNN) framework.
机译:通过在实时约束下的图像处理和计算机视觉的图像处理和计算机视觉之中,对快速和架构优化的算术运算的需求至关重要。最近介绍的POSITTM编号系统,开始探索实际数字的替代和有效的陈述,以及最近引入的POSITTM编号系统非常有前景。此外,利用彻底地定位单指令多数据(SIMD)引擎的架构特定数学库的实现,提供给深神经网络框架的加速度是增加的。在本文中,我们介绍了利用DIS算术和ARM可伸缩矢量扩展SIMD引擎的一些核图像处理操作的实现。此外,我们向自动驾驶场景提供实时图像处理的应用,在Tinydnn深神经网络(DNN)框架上呈现基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号