首页> 外文期刊>Journal of supercomputing >Enhancing the context-aware FOREX market simulation using a parallel elastic network model
【24h】

Enhancing the context-aware FOREX market simulation using a parallel elastic network model

机译:使用并行弹性网络模型增强上下文感知的外汇市场模拟

获取原文
获取原文并翻译 | 示例

摘要

Foreign exchange (FOREX) market is a decentralized global marketplace in which different participants, such as international banks, companies or investors, can buy, sell, exchange and speculate on currencies. This market is considered to be the largest financial market in the world in terms of trading volume. Indeed, the just-in-time price prediction for a currency pair exchange rate (e.g., EUR/USD) provides valuable information for companies and investors as they can take different actions to improve their business. The trading volume in the FOREX market is huge, disperses, in continuous operations (24 h except weekends), and the context significantly affects the exchange rates. This paper introduces a context-aware algorithm to model the behavior of the FOREX Market, called parallel elastic network model (PENM). This algorithm is inspired by natural procedures like the behavior of macromolecules in dissolution. The main results of this work include the possibility to represent the market evolution of up to 21 currency pair, being all connected, thus emulating the real-world FOREX market behavior. Moreover, because the computational needs required are highly costly as the number of currency pairs increases, a hybrid parallelization using several shared memory and message passing algorithms studied on distributed cluster is evaluated to achieve a high-throughput algorithm that answers the real-time constraints of the FOREX market. The PENM is also compared with a vector autoregressive (VAR) model using both a classical statistical measure and a profitability measure. Specifically, the results indicate that PENM outperforms VAR models in terms of quality, achieving up to 930xspeed-up factor compared to traditional R codes using in this field.
机译:外汇(FOREX)市场是一个去中心化的全球市场,在该市场中,不同参与者(例如国际银行,公司或投资者)可以购买,出售,交换和投机货币。就交易量而言,该市场被认为是世界上最大的金融市场。实际上,货币对汇率(例如欧元/美元)的即时价格预测为公司和投资者提供了有价值的信息,因为他们可以采取不同的行动来改善业务。外汇市场的交易量巨大,在连续运行(周末除外,全天24小时)中分散,并且上下文显着影响汇率。本文介绍了一种上下文感知算法来对外汇市场的行为进行建模,称为并行弹性网络模型(PENM)。该算法的灵感来自自然过程,例如大分子在溶解过程中的行为。这项工作的主要结果包括可以代表多达21个货币对的市场发展情况,它们相互连接,从而模拟了真实的外汇市场行为。此外,由于随着货币对数量的增加,所需的计算需求非常昂贵,因此,使用在分布式集群上研究的几种共享内存和消息传递算法的混合并行化方法进行了评估,从而实现了一种高吞吐量的算法,该算法可满足以下需求:外汇市场。同时使用经典统计量度和获利能力量度,将PENM与向量自回归(VAR)模型进行比较。具体而言,结果表明PENM在质量方面优于VAR模型,与在该领域中使用的传统R代码相比,可实现高达930倍的提速因子。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第3期|2022-2038|共17页
  • 作者

  • 作者单位

    Artificial Intelligence Talentum SL Edificio CEEIM Campus Univ Espinardo Murcia 30100 Spain;

    Catholic Univ San Antonio Murcia UCAM Polytech Sch Murcia 30107 Spain;

    Miguel Hernandez Univ Ctr Operat Res Elche Campus Alicante Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    FOREX simulation; Trading; Context-aware; Big data; Bioinspired computing; Parallel computing;

    机译:外汇模拟;贸易;上下文感知;大数据;生物启发计算;并行运算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号