首页> 外文期刊>Journal of supercomputing >A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs
【24h】

A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs

机译:用于分析GPU上数据包分类算法的校准渐近框架

获取原文
获取原文并翻译 | 示例

摘要

Packet classification is a computationally intensive, highly parallelizable task in many advanced network systems like high-speed routers and firewalls. Recently, graphics processing units (GPUs) have been exploited as efficient accelerators for parallel implementation of software packet classifiers. However, due to the lack of a comprehensive analysis framework, none of the conducted studies to date has efficiently exploited the capabilities of the complex memory subsystem of such highly threaded machines. In this work, we combine asymptotic and calibrated analysis frameworks to present a more efficient framework that not only can boost the straightforward design of efficient parallel algorithms that run on different architectures of GPU but also can provide a powerful analysis tool for predicting any empirical result. Comparing analytical results with the experimental findings of ours and other researchers who have implemented and evaluated packet classification algorithms on a variety of GPUs evinces the efficiency of the proposed analysis framework.
机译:在许多高级网络系统(如高速路由器和防火墙)中,数据包分类是一项计算量大,高度可并行化的任务。最近,图形处理单元(GPU)已被用作并行实现软件分组分类器的有效加速器。但是,由于缺乏全面的分析框架,迄今为止进行的研究均未有效利用这种高度线程化的计算机的复杂内存子系统的功能。在这项工作中,我们结合了渐近分析和校准分析框架,以提供一个更有效的框架,该框架不仅可以促进在不同GPU架构上运行的高效并行算法的直接设计,而且可以为预测任何经验结果提供强大的分析工具。将分析结果与我们和其他研究人员的实验结果进行比较,他们在各种GPU上实施和评估了数据包分类算法,这证明了所提出的分析框架的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号