首页> 外文期刊>IEEE/ACM Transactions on Networking >Design and Implementation of a Stateful Network Packet Processing Framework for GPUs
【24h】

Design and Implementation of a Stateful Network Packet Processing Framework for GPUs

机译:GPU的状态网络数据包处理框架的设计和实现

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing units (GPUs) are a powerful platform for building the high-speed network traffic processing applications using low-cost hardware. The existing systems tap the massively parallel architecture of GPUs to speed up certain computationally intensive tasks, such as cryptographic operations and pattern matching. However, they still suffer from significant overheads due to critical-path operations that are still being carried out on the CPU, and redundant inter-device data transfers. In this paper, we present GASPP, a programmable network traffic processing framework tailored to modern graphics processors. GASPP integrates optimized GPU-based implementations of a broad range of operations commonly used in the network traffic processing applications, including the first purely GPU-based implementation of network flow tracking and TCP stream reassembly. GASPP also employs novel mechanisms for tackling the control flow irregularities across SIMT threads, and for sharing the memory context between the network interfaces and the GPU. Our evaluation shows that GASPP can achieve multigigabit traffic forwarding rates even for complex and computationally intensive network operations, such as stateful traffic classification, intrusion detection, and packet encryption. Especially when consolidating multiple network applications on the same system, GASPP achieves up to 16.2× speedup compared with different monolithic GPU-based implementations of the same applications.
机译:图形处理单元(GPU)是使用低成本硬件构建高速网络流量处理应用程序的强大平台。现有系统利用GPU的大规模并行体系结构来加速某些计算密集型任务,例如密码运算和模式匹配。但是,由于仍在CPU上执行关键路径操作以及冗余的设备间数据传输,它们仍然遭受大量开销。在本文中,我们介绍了GASP​​P,这是一种为现代图形处理器量身定制的可编程网络流量处理框架。 GASPP集成了网络流量处理应用程序中常用的各种操作的优化的基于GPU的实现,包括第一个纯基于GPU的网络流跟踪和TCP流重组的实现。 GASPP还采用了新颖的机制来解决SIMT线程之间的控制流不规则问题,并在网络接口和GPU之间共享内存上下文。我们的评估表明,即使对于复杂且计算量大的网络操作(例如有状态流量分类,入侵检测和数据包加密),GASPP仍可以实现千兆流量的转发速率。尤其是在同一系统上整合多个网络应用程序时,与相同应用程序的基于单片GPU的不同实现方式相比,GASPP的速度提高了16.2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号