首页> 外文期刊>IEEE/ACM Transactions on Networking >Scalable Algorithms for NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs
【24h】

Scalable Algorithms for NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs

机译:用于GPU的NFA多步和基于NFA的深度包检查的可扩展算法

获取原文
获取原文并翻译 | 示例

摘要

Finite state automata (FSA) are used by many network processing applications to match complex sets of regular expressions in network packets. In order to make FSA-based matching possible even at the ever-increasing speed of modern networks, multi-striding has been introduced. This technique increases input parallelism by transforming the classical FSA that consumes input byte by byte into an equivalent one that consumes input in larger units. However, the algorithms used today for this transformation are so complex that they often result unfeasible for large and complex rule sets. This paper presents a set of new algorithms that extend the applicability of multi-striding to complex rule sets. These algorithms can transform nondeterministic finite automata (NFA) into their multi-stride form with reduced memory and time requirements. Moreover, they exploit the massive parallelism of graphical processing units for NFA-based matching. The final result is a boost of the overall processing speed on typical regex-based packet processing applications, with a speedup of almost one order of magnitude compared to the current state-of-the-art algorithms.
机译:有限状态自动机(FSA)被许多网络处理应用程序用来匹配网络数据包中的正则表达式的复杂集合。为了即使在现代网络不断提高的速度下也可以使基于FSA的匹配成为可能,引入了多步跨步。该技术通过将逐字节消耗输入的经典FSA转换为以较大单位消耗输入的等效FSA,从而提高了输入并行度。但是,今天用于这种转换的算法是如此复杂,以至于对于大型和复杂的规则集,它们常常导致不可行。本文提出了一组新算法,将多步跨步的适用性扩展到复杂规则集。这些算法可以将不确定性有限自动机(NFA)转换为多步形式,从而减少了内存和时间需求。此外,他们利用图形处理单元的大规模并行性进行基于NFA的匹配。最终结果是提高了典型基于正则表达式的数据包处理应用程序的总体处理速度,与当前的最新算法相比,速度提高了近一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号