首页> 外文期刊>Journal of supercomputing >Data distribution schemes of sparse arrays on distributed memory multicomputers
【24h】

Data distribution schemes of sparse arrays on distributed memory multicomputers

机译:分布式内存多计算机上稀疏数组的数据分配方案

获取原文
获取原文并翻译 | 示例

摘要

A data distribution scheme of sparse arrays on a distributed memory multicomputer, in general, is composed of three phases, data partition, data distribution, and data compression. To implement the data distribution scheme, many methods proposed in the literature first perform the data partition phase, then the data distribution phase, followed by the data compression phase. We called a data distribution scheme with this order as Send Followed Compress (SFC) scheme. In this paper, we propose two other data distribution schemes, Compress Followed Send (CFS) and Encoding-Decoding (ED), for sparse array distribution. In the CFS scheme, the data compression phase is performed before the data distribution phase. In the ED scheme, the data compression phase can be divided into two steps, encoding and decoding. The encoding step and the decoding step are performed before and after the data distribution phase, respectively. To evaluate the CFS and the ED schemes, we compare them with the SFC scheme. In the data partition phase, the row partition, the column partition, and the 2D mesh partition with/without load-balancing methods are used for these three schemes. In the compression phase, the CRS/CCS methods are used to compress sparse local arrays for the SFC and the CFS schemes while the encoding/decoding step is used for the ED scheme. Both theoretical analysis and experimental tests were conducted. In the theoretical analysis, we analyze the SFC, the CFS, and the ED schemes in terms of the data distribution time and the data compression time. In experimental tests, we implemented these three schemes on an IBM SP2 parallel machine. From the experimental results, for most of test cases, the CFS and the ED schemes outperform the SFC scheme. For the CFS and the ED schemes, the ED scheme outperforms the CFS scheme for all test cases.
机译:分布式内存多计算机上稀疏数组的数据分配方案通常由三个阶段组成,即数据分区,数据分配和数据压缩。为了实现数据分配方案,文献中提出的许多方法首先执行数据分区阶段,然后执行数据分配阶段,然后执行数据压缩阶段。我们称此顺序的数据分发方案为“跟随压缩”(SFC)方案。在本文中,我们提出了另外两种数据分配方案,即稀疏数组分配的压缩跟随发送(CFS)和编码解码(ED)。在CFS方案中,数据压缩阶段先于数据分发阶段执行。在ED方案中,数据压缩阶段可以分为编码和解码两个步骤。编码步骤和解码步骤分别在数据分发阶段之前和之后执行。为了评估CFS和ED方案,我们将它们与SFC方案进行了比较。在数据分区阶段,这三种方案使用具有/不具有负载平衡方法的行分区,列分区和2D网格分区。在压缩阶段,CRS / CCS方法用于压缩SFC和CFS方案的稀疏本地数组,而编码/解码步骤用于ED方案。进行了理论分析和实验测试。在理论分析中,我们根据数据分发时间和数据压缩时间来分析SFC,CFS和ED方案。在实验测试中,我们在IBM SP2并行计算机上实现了这三种方案。从实验结果来看,对于大多数测试用例,CFS和ED方案都优于SFC方案。对于CFS和ED方案,对于所有测试用例,ED方案都优于CFS方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号