首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed memory multicomputers
【24h】

Efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed memory multicomputers

机译:基于EKMR方案的分布式内存多计算机多维数组操作的高效数据并行算法

获取原文
获取原文并翻译 | 示例

摘要

Array operations are useful in a large number of important scientific codes, such as molecular dynamics, finite element methods, climate modeling, atmosphere and ocean sciences, etc. In our previous work, we have proposed a scheme of extended Karnaugh map representation (EKMR) for multidimensional array representation. We have shown that sequential multidimensional array operation algorithms based on the EKMR scheme have better performance than those based on the traditional matrix representation (TMR) scheme. Since parallel multidimensional array operations have been an extensively investigated problem, we present efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed memory multicomputers. In a data parallel programming paradigm, in general, we distribute array elements to processors based on various distribution schemes, do local computation in each processor, and collect computation results from each processor. Based on the row, column, and 2D mesh distribution schemes, we design data parallel algorithms for matrix-matrix addition and matrix-matrix multiplication array operations in both TMR and EKMR schemes for multidimensional arrays. We also design data parallel algorithms for six Fortran 90 array intrinsic functions: All, Maxval, Merge, Pack, Sum, and Cshift. We compare the time of the data distribution, the local computation, and the result collection phases of these array operations based on the TMR and the EKMR schemes. The experimental results show that algorithms based on the EKMR scheme outperform those based on the TMR scheme for all test cases.
机译:数组运算可用于许多重要的科学代码,例如分子动力学,有限元方法,气候模型,大气和海洋科学等。在我们之前的工作中,我们提出了扩展的卡诺图表示法(EKMR)用于多维数组表示。我们已经证明,基于EKMR方案的顺序多维数组运算算法的性能要优于基于传统矩阵表示(TMR)方案的算法。由于并行多维数组操作已被广泛研究的问题,我们提出了基于EKMR方案的分布式存储多计算机多维数组操作的高效数据并行算法。通常,在数据并行编程范例中,我们基于各种分配方案将数组元素分配给处理器,在每个处理器中进行本地计算,并从每个处理器收集计算结果。基于行,列和2D网格分布方案,我们针对多维阵列的TMR和EKMR方案设计用于矩阵矩阵加法和矩阵矩阵乘法阵列运算的数据并行算法。我们还为六个Fortran 90阵列固有功能设计了数据并行算法:All,Maxval,Merge,Pack,Sum和Cshift。我们比较了基于TMR和EKMR方案的这些数组运算的数据分发时间,本地计算时间和结果收集阶段。实验结果表明,在所有测试案例中,基于EKMR方案的算法均优于基于TMR方案的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号