首页> 外文期刊>Journal of supercomputing >Exploiting in-memory storage for improving workflow executions in cloud platforms
【24h】

Exploiting in-memory storage for improving workflow executions in cloud platforms

机译:利用内存存储来改善云平台中的工作流执行

获取原文
获取原文并翻译 | 示例

摘要

The Data Mining Cloud Framework (DMCF) is an environment for designing and executing data analysis workflows in cloud platforms. Currently, DMCF relies on the default storage of the public cloud provider for any I/O-related operation. This implies that the I/O performance of DMCF is limited by the performance of the default storage. In this work, we propose the usage of the Hercules system within DMCF as an ad hoc storage system for temporary data produced inside workflow-based applications. Hercules is a distributed in-memory storage system highly scalable and easy to deploy. The proposed solution takes advantage of the scalability capabilities of Hercules to avoid the bandwidth limits of the default storage. We evaluated the performance of Hercules compared with the Microsoft Azure Storage solution by using synthetic benchmarks with the objective of demonstrating the viability of the proposed solution. Then, we evaluated the integration of Hercules and DMCF on a real application consisting of a workflow that accesses temporary data using either Azure storage or Hercules. The I/O overhead in this real-life scenario using Hercules has been reduced by 36 % with respect to Azure storage, leading to a 13 % reduction of the total execution time. This confirms that our in-memory approach is effective in improving the performance of data-intensive workflow executions in cloud-based platforms.
机译:数据挖掘云框架(DMCF)是用于在云平台中设计和执行数据分析工作流的环境。当前,DMCF依赖于公共云提供程序的默认存储来执行任何与I / O相关的操作。这意味着DMCF的I / O性能受默认存储的性能限制。在这项工作中,我们建议在DMCF中使用Hercules系统作为临时存储系统,以临时存储基于工作流的应用程序中生成的数据。 Hercules是一个高度可扩展且易于部署的分布式内存存储系统。提出的解决方案利用了Hercules的可伸缩性功能来避免默认存储的带宽限制。我们通过使用综合基准评估了Hercules与Microsoft Azure存储解决方案相比的性能,目的是证明所提出解决方案的可行性。然后,我们评估了Hercules和DMCF在由工作流组成的真实应用程序上的集成,该工作流使用Azure存储或Hercules访问临时数据。在实际情况下,使用Hercules的I / O开销相对于Azure存储减少了36%,从而使总执行时间减少了13%。这证实了我们的内存中方法可有效提高基于云的平台中数据密集型工作流执行的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号