首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Using MinMax-Memory Claims to Improve In-Memory Workflow Computations in the Cloud
【24h】

Using MinMax-Memory Claims to Improve In-Memory Workflow Computations in the Cloud

机译:使用MinMax-Memory声明改善云中的内存中工作流计算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider to improve scientific workflows in cloud environments where data transfers between tasks are performed via provisioned in-memory caching as a service, instead of relying entirely on slower disk-based file systems. However, this improvement is not free since services in the cloud are usually charged in a “pay-as-you-go” model. As a consequence, the workflow tenants have to estimate the amount of memory that they would like to pay. Given the intrinsic complexity of the workflows, it would be very hard to make an accurate prediction, which would lead to either oversubscription or undersubscription, resulting in unproductive spending or performance degradation. To address this problem, we propose a concept of minmax memory claim (MMC) to achieve cost-effective workflow computations in in-memory cloud computing environments. The minmax-memory claim is defined as the minimum amount of memory required to finish the workflow without compromising its maximum concurrency. With the concept of MMC, the workflow tenants can achieve the best performance via in-memory computing while minimizing the cost. In this paper, we present the procedure of how to find the MMCs for those workflows with arbitrary graphs in general and develop optimal efficient algorithms for some well-structured workflows in particular. To further show the values of this concept, we also implement these algorithms and apply them, through a simulation study, to improve deadlock resolutions in workflow-based workloads when memory resources are constrained.
机译:在本文中,我们考虑改进云环境中的科学工作流程,在这些环境中,任务之间的数据传输通过提供的内存中缓存即服务来执行,而不是完全依赖于较慢的基于磁盘的文件系统。但是,这种改进并非免费的,因为云中的服务通常以“现收现付”模式收费。结果,工作流承租人必须估计他们想要支付的内存量。考虑到工作流程的内在复杂性,很难进行准确的预测,这将导致超额预订或订购不足,从而导致生产性支出不足或性能下降。为了解决此问题,我们提出了最小最大内存声明(MMC)的概念,以在内存中的云计算环境中实现具有成本效益的工作流计算。 minmax-memory声明定义为在不损害其最大并发性的情况下完成工作流所需的最小内存量。借助MMC的概念,工作流租户可以通过内存计算实现最佳性能,同时将成本降至最低。在本文中,我们介绍了一般如何为带有任意图的工作流找到MMC的过程,尤其是为某些结构良好的工作流开发最佳有效算法。为了进一步展示此概念的价值,我们还实施了这些算法,并通过模拟研究将其应用到内存不足的情况下,以提高基于工作流的工作负载中的死锁分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号