首页> 外文期刊>Journal of supercomputing >Adaptive sparse matrix representation for efficient matrix-vector multiplication
【24h】

Adaptive sparse matrix representation for efficient matrix-vector multiplication

机译:自适应稀疏矩阵表示,用于有效的矩阵矢量乘法

获取原文
获取原文并翻译 | 示例

摘要

A wide range of applications in engineering and scientific computing are based on the sparse matrix computation. There exist a variety of data representations to keep the non-zero elements in sparse matrices, and each representation favors some matrices while not working well for some others. The existing studies tend to process all types of applications, e.g., the most popular application which is matrix-vector multiplication, with different sparse matrix structures using a fixed representation. While Graphics Processing Units (GPUs) have evolved into a very attractive platform for general purpose computations, most of the existing works on sparse matrix-vector multiplication (SpMV, for short) consider CPUs. In this work, we design and implement an adaptive GPU-based SpMV scheme that selects the best format for the input matrix having the configuration and characteristics of GPUs in mind. We study the effect of various parameters and different settings on the performance of SpMV applications when employing different data representations. We then employ an adaptive scheme to execute different sparse matrix applications using proper sparse matrix representation formats. Evaluation results show that our run-time adaptive scheme properly adapts to different applications by selecting an appropriate representation for each input sparse matrix. The preliminary results show that our adaptive scheme improves the performance of sparse matrix multiplications by 2.1 for single-precision and 1.6 for double-precision formats, on average.
机译:基于稀疏矩阵计算,在工程和科学计算中有广泛的应用。存在多种数据表示形式,以将非零元素保留在稀疏矩阵中,并且每种表示形式都偏爱某些矩阵,而另一些则无法很好地工作。现有研究倾向于处理所有类型的应用,例如,最流行的应用是矩阵矢量乘法,并且使用固定表示具有不同的稀疏矩阵结构。尽管图形处理单元(GPU)已经发展成为一个非常吸引人的通用计算平台,但有关稀疏矩阵矢量乘法(简称SpMV)的大多数现有工作都考虑使用CPU。在这项工作中,我们设计并实现了一个基于GPU的自适应SpMV方案,该方案在考虑了GPU的配置和特性的情况下为输入矩阵选择了最佳格式。当使用不同的数据表示形式时,我们研究了各种参数和不同设置对SpMV应用程序性能的影响。然后,我们采用一种自适应方案,使用适当的稀疏矩阵表示格式来执行不同的稀疏矩阵应用程序。评估结果表明,我们的运行时自适应方案可以通过为每个输入稀疏矩阵选择合适的表示形式来适当地适应不同的应用。初步结果表明,我们的自适应方案平均将稀疏矩阵乘法的性能提高了2.1(单精度)和1.6(双精度)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号