首页> 外文期刊>The Journal of Supercomputing >Compiler support for general-purpose computation on GPUs
【24h】

Compiler support for general-purpose computation on GPUs

机译:编译器支持GPU上的通用计算

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the GPU (graphics processing unit) has evolved into an extremely powerful and flexible processor, with it now representing an attractive platform for general-purpose computation. Moreover, changes to the design and programmability of GPUs provide the opportunity to perform general-purpose computation on a GPU (GPGPU). Even though many programming languages, software tools, and libraries have been proposed to facilitate GPGPU programming, the unusual and specific programming model of the GPU remains a significant barrier to writing GPGPU programs. In this paper, we introduce a novel compiler-based approach for GPGPU programming. Compiler directives are used to label code fragments that are to be executed on the GPU. Our GPGPU compiler, Guru, converts the labeled code fragments into ISO-compliant C code that contains appropriate OpenGL and Cg APIs. A native C compiler can then be used to compile it into the executable code for GPU. Our compiler is implemented based on the Open64 compiler infrastructure. Preliminary experimental results from selected benchmarks show that our compiler produces significant performance improvements for programs that exhibit a high degree of data parallelism.
机译:近年来,GPU(图形处理单元)已发展成为功能强大且灵活的处理器,现在它代表了一个有吸引力的通用计算平台。此外,GPU设计和可编程性的变化提供了在GPU(GPGPU)上执行通用计算的机会。尽管已经提出了许多编程语言,软件工具和库来促进GPGPU编程,但是GPU的异常和特定的编程模型仍然是编写GPGPU程序的重要障碍。在本文中,我们介绍了一种新颖的基于编译器的GPGPU编程方法。编译器指令用于标记将在GPU上执行的代码片段。我们的GPGPU编译器Guru将标记的代码片段转换为包含适当的OpenGL和Cg API的符合ISO的C代码。然后可以使用本机C编译器将其编译为GPU的可执行代码。我们的编译器是基于Open64编译器基础结构实现的。所选基准测试的初步实验结果表明,我们的编译器为表现出高度数据并行性的程序带来了显着的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号