首页> 外文期刊>Concurrency and Computation >General-purpose computation on GPUs for high performance cloud computing
【24h】

General-purpose computation on GPUs for high performance cloud computing

机译:GPU上的通用计算,可实现高性能云计算

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is offering new approaches for High Performance Computing (HPC) as it provides dynamically scalable resources as a service over the Internet. In addition, General-Purpose computation on Graphical Processing Units (GPGPU) has gained much attention from scientific computing in multiple domains, thus becoming an important programming model in HPC. Compute Unified Device Architecture (CUDA) has been established as a popular programming model for GPGPUs, removing the need for using the graphics APIs for computing applications. Open Computing Language (OpenCL) is an emerging alternative not only for GPGPU but also for any parallel architecture. GPU clusters, usually programmed with a hybrid parallel paradigm mixing Message Passing Interface (MPI) with CUDA/OpenCL, are currently gaining high popularity. Therefore, cloud providers are deploying clusters with multiple GPUs per node and high-speed network interconnects in order to make them a feasible option for HPC as a Service (HPCaaS). This paper evaluates GPGPU for high performance cloud computing on a public cloud computing infrastructure, Amazon EC2 Cluster GPU Instances (CGI), equipped with NVIDIA Tesla GPUs and a 10 Gigabit Ethernet network. The analysis of the results, obtained using up to 64 GPUs and 256-processor cores, has shown that GPGPU is a viable option for high performance cloud computing despite the significant impact that virtualized environments still have on network overhead, which still hampers the adoption of GPGPU communication-intensive applications.
机译:云计算为高性能计算(HPC)提供了新方法,因为它通过Internet提供可动态扩展的资源即服务。此外,图形处理单元(GPGPU)上的通用计算已受到来自多个领域的科学计算的广泛关注,因此成为HPC中的重要编程模型。已经建立了计算统一设备架构(CUDA)作为GPGPU的流行编程模型,从而消除了将图形API用于计算应用程序的需求。开放计算语言(OpenCL)不仅是GPGPU的新兴选择,而且是任何并行架构的新兴选择。通常使用混合并行范例混合消息传递接口(MPI)和CUDA / OpenCL进行编程的GPU集群目前正变得越来越流行。因此,云提供商正在部署每个节点具有多个GPU和高速网络互连的群集,以使其成为HPC即服务(HPCaaS)的可行选择。本文评估了GPGPU在公共云计算基础架构,配备NVIDIA Tesla GPU和10 Gb以太网的Amazon EC2集群GPU实例(CGI)上的高性能云计算。使用多达64个GPU和256处理器内核获得的结果分析表明,尽管虚拟化环境仍然对网络开销产生重大影响,但GPGPU是高性能云计算的可行选择,这仍然不利于采用GPGPU通信密集型应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号