首页> 外文期刊>The Journal of Supercomputing >Parallel medical image reconstruction: from graphics processing units (GPU) to Grids
【24h】

Parallel medical image reconstruction: from graphics processing units (GPU) to Grids

机译:并行医学图像重建:从图形处理单元(GPU)到网格

获取原文
获取原文并翻译 | 示例

摘要

We present and compare a variety of parallelization approaches for a real-world case study on modern parallel and distributed computer architectures. Our case study is a production-quality, time-intensive algorithm for medical image reconstruction used in computer tomography (PET). We parallelize this algorithm for the main kinds of contemporary parallel architectures: shared-memory multiprocessors, distributed-memory clusters, graphics processing units (GPU) using the CUDA framework, the Cell processor and, finally, how various architectures can be accessed in a distributed Grid environment. The main contribution of the paper, besides the parallelization approaches, is their systematic comparison regarding four important criteria: performance, programming comfort, accessibility, and cost-effectiveness. We report results of experiments on particular parallel machines of different architectures that confirm the findings of our systematic comparison.
机译:我们提出并比较了各种并行化方法,用于现代并行和分布式计算机体系结构的实际案例研究。我们的案例研究是一种用于计算机断层扫描(PET)的高质量,耗时的医学图像重建算法。我们将这种算法并行化用于当代主要并行架构:共享内存多处理器,分布式内存集群,使用CUDA框架的图形处理单元(GPU),单元处理器,以及最后如何在分布式系统中访问各种架构网格环境。除了并行化方法外,本文的主要贡献是它们对四个重要标准的系统比较:性能,编程舒适性,可访问性和成本效益。我们报告了在不同架构的特定并行计算机上的实验结果,这些结果证实了我们系统比较的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号