首页> 美国卫生研究院文献>other >Real time implementation of anti-scatter grid artifact elimination method for high resolution x-ray imaging CMOS detectors using Graphics Processing Units (GPUs)
【2h】

Real time implementation of anti-scatter grid artifact elimination method for high resolution x-ray imaging CMOS detectors using Graphics Processing Units (GPUs)

机译:使用图形处理单元(GPU)的高分辨率X射线成像CMOS检测器的防散射网格伪影消除方法的实时实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scatter is one of the most important factors effecting image quality in radiography. One of the best scatter reduction methods in dynamic imaging is an anti-scatter grid. However, when used with high resolution imaging detectors these grids may leave grid-line artifacts with increasing severity as detector resolution improves. The presence of such artifacts can mask important details in the image and degrade image quality. We have previously demonstrated that, in order to remove these artifacts, one must first subtract the residual scatter that penetrates through the grid followed by dividing out a reference grid image; however, this correction must be done fast so that corrected images can be provided in real-time to clinicians.In this study, a standard stationary Smit-Rontgen x-ray grid (line density – 70 lines/cm, grid ratio – 13:1) was used with a high-resolution CMOS detector, the Dexela 1207 (pixel size – 75 micron) to image anthropomorphic head phantoms. For a 15 × 15 cm field-of-view (FOV), scatter profiles of the anthropomorphic head phantoms were estimated then iteratively modified to minimize the structured noise due to the varying grid-line artifacts across the FOV.Images of the head phantoms taken with the grid, before and after the corrections, were compared, demonstrating almost total elimination of the artifact over the full FOV. This correction is done fast using Graphics Processing Units (GPUs), with 7–8 iterations and total time taken to obtain the corrected image of only 87 ms, hence, demonstrating the virtually real-time implementation of the grid-artifact correction technique.
机译:散射是影响射线照相术图像质量的最重要因素之一。动态成像中最好的散射减少方法之一是防散射网格。但是,当与高分辨率成像检测器一起使用时,随着检测器分辨率的提高,这些栅格可能会留下严重程度不断增加的栅格线伪影。这些伪影的存在会掩盖图像中的重要细节并降低图像质量。先前我们已经证明,为了消除这些伪像,必须首先减去穿透栅格的残留散射,然后再划分参考栅格图像;但是,必须尽快进行校正,以便可以将校正后的图像实时提供给临床医生。在这项研究中,使用标准的固定Smit-Rontgen X射线栅格(线密度– 70线/ cm,栅格比率– 13: 1)与高分辨率CMOS检测器Dexela 1207(像素大小– 75微米)一起使用,以对拟人化的头部模型进行成像。对于15×15 cm的视场(FOV),估计拟人化头部幻影的散射轮廓,然后迭代修改以最小化由于整个FOV中网格线伪影的变化而导致的结构噪声。比较了校正前后的网格,表明在整个FOV上几乎完全消除了伪像。使用图形处理单元(GPU)可以快速完成此校正,该迭代需要进行7至8次迭代,而获得校正后的图像所需的总时间仅为87 ms,因此证明了网格伪影校正技术的实时实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号