...
首页> 外文期刊>Journal of Statistical Physics >On the Derivation of a High-Velocity Tail from the Boltzmann–Fokker–Planck Equation for Shear Flow
【24h】

On the Derivation of a High-Velocity Tail from the Boltzmann–Fokker–Planck Equation for Shear Flow

机译:从玻尔兹曼-福克-普朗克方程的剪切流推导高速尾巴

获取原文
获取原文并翻译 | 示例

摘要

Uniform shear flow is a paradigmatic example of a nonequilibrium fluid state exhibiting non-Newtonian behavior. It is characterized by uniform density and temperature and a linear velocity profile U x (y)=ay, where a is the constant shear rate. In the case of a rarefied gas, all the relevant physical information is represented by the one-particle velocity distribution function f(r,v)=f(V), with V≡v−U(r), which satisfies the standard nonlinear integro-differential Boltzmann equation. We have studied this state for a two-dimensional gas of Maxwell molecules with a collision rate K(θ)∝lim ∈→0 ∈ −2 δ(θ−∈), where θ is the scattering angle, in which case the nonlinear Boltzmann collision operator reduces to a Fokker–Planck operator. We have found analytically that for shear rates larger than a certain threshold value a th≃0.3520ν (where ν is an average collision frequency and a th/ν is the real root of the cubic equation 64x 3+16x 2+12x−9=0) the velocity distribution function exhibits an algebraic high-velocity tail of the form f(V;a)∼|V|−4−σ(a) Φ(ϕ;a), where ϕ≡tan V y /V x and the angular distribution function Φ(ϕ;a) is the solution of a modified Mathieu equation. The enforcement of the periodicity condition Φ(ϕ;a)=Φ(ϕ+π;a) allows one to obtain the exponent σ(a) as a function of the shear rate. It diverges when a→a th and tends to a minimum value σ min≃1.252 in the limit a→∞. As a consequence of this power-law decay for a>a th, all the velocity moments of a degree equal to or larger than 2+σ(a) are divergent. In the high-velocity domain the velocity distribution is highly anisotropic, with the angular distribution sharply concentrated around a preferred orientation angle ~ϕ(a), which rotates from ~ϕ=−π/4,3π/4 when a→a th to ~ϕ=0,π in the limit a→∞.
机译:均匀的剪切流是展现非牛顿行为的非平衡流体状态的典型例子。它的特点是密度和温度均匀,线速度曲线U x (y)= ay,其中a是恒定的剪切速率。在稀有气体的情况下,所有相关物理信息都由单粒子速度分布函数f(r,v)= f(V)表示,其中V≡v-U(r)满足标准非线性积分微分玻尔兹曼方程。我们研究了碰撞速度为K(θ)∝lim∈→0 ∈-2 δ(θ-∈)的麦克斯韦分子的二维气体的状态,其中θ是散射角度,在这种情况下,非线性Boltzmann碰撞算子会减小为Fokker-Planck算子。从分析上我们发现,对于大于一定阈值的剪切速率,应为th ≃0.3520ν(其中ν是平均碰撞频率,而th /ν是三次方程64x 3的实根) + 16x 2 + 12x−9 = 0)速度分布函数具有形式为f(V; a)〜| V | -4−σ(a)<的代数高速尾/ sup>Φ(ϕ; a),其中ϕ≡tan V y / V x 和角度分布函数Φ(ϕ; a)是修正的Mathieu方程的解。周期性条件Φ(ϕ; a)=Φ(ϕ +π; a)的执行使人们可以获得与剪切速率有关的指数σ(a)。当a→a th 时发散,并在极限a→∞处趋于最小值σmin ≃1.252。由于a> th 的幂律衰减,所有等于或大于2 +σ(a)的度数的速度矩都是发散的。在高速域中,速度分布是高度各向异性的,其角度分布急剧集中在首选方位角〜ϕ(a)周围,当a→a th <时,该方位角从〜ϕ =-π/4,3π/ 4旋转。 / sub>到极限a→∞中的〜ϕ = 0,π。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号