首页> 外文期刊>Journal of statistical computation and simulation >Consistency properties for the estimators of partially linear regression model under dependent errors
【24h】

Consistency properties for the estimators of partially linear regression model under dependent errors

机译:相依误差下部分线性回归模型估计量的一致性性质

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the consistency properties for the partially linear regression model: where , and are known to be non-random, is an unknown continuous function on a compact set A in , are -mixing random errors with mean zero, are random variables which are observable at points and . By using the probability inequalities and moment inequalities, we obtain the strong consistency, complete consistency and mean consistency for the estimators and of beta and g, respectively. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.
机译:在本文中,我们研究了部分线性回归模型的一致性性质:其中,并且是非随机的,是紧集A in上的未知连续函数,是-将均值为零的随机误差混合,是随机的在点和处可见的变量。通过使用概率不等式和矩不等式,我们分别获得了估计值和β和g的强一致性,完全一致性和均值一致性。进行了仿真研究以证明所提出程序的性能,并分析了一个实际示例以进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号