首页> 外文期刊>Journal of statistical computation and simulation >Model selection via conditional conceptual predictive statistic under ridge regression in linear mixed models
【24h】

Model selection via conditional conceptual predictive statistic under ridge regression in linear mixed models

机译:线性混合模型中岭回归下基于条件概念预测统计量的模型选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on the progress of variant of conceptual predictive () statistic and we propose the model selection criterion that depend on statistic under ridge regression for linear mixed model selection. The proposed criterion is conditional ridge () statistic based on the expected conditional Gauss discrepancy. Two versions of statistic under the assumptions that the variance components are known and unknown are derived. To examine the performance of the proposed criterion, a real data analysis and a Monte Carlo simulation study are given.
机译:在本文中,我们关注概念预测()统计量的变体的进展,并提出了基于岭回归下的统计量的模型选择准则,以进行线性混合模型选择。提出的标准是基于预期条件高斯差异的条件ridge()统计量。在方差成分已知和未知的假设下得出了两种统计形式。为了检验所提出标准的性能,给出了真实数据分析和蒙特卡洛模拟研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号