首页> 外文期刊>Journal of statistical computation and simulation >From grouped to de-grouped data: a new approach in distribution fitting for grouped data
【24h】

From grouped to de-grouped data: a new approach in distribution fitting for grouped data

机译:从分组数据到解分组数据:针对分组数据进行分布拟合的新方法

获取原文
获取原文并翻译 | 示例

摘要

Sampling within a given interval with a constraint has not been previously considered. Standard parametric simulation engines require knowledge of the parameters of the distribution from which a sample is drawn. These methods are limited if additional constrains are required for the simulated data. We propose a method that generates the targeted number of individual observations within a given interval with a constraint that the average value of observations is known. This method is further extended to a grouped data setting, as a way of data de-grouping, when the frequency and average value of observations are provided for each group. Several simulation studies are employed to evaluate the performance of the proposed method, in case of both a single interval and grouped data, for different simulation settings. Furthermore, the proposed method is evaluated in the parameter recovery when different distributions are fitted to the de-grouped data. This method is found to be superior to the uniform method previously used in data de-grouping. The results of the simulation study are promising and they show that this method can be used successfully in the applications where data de-grouping requires that the average value of observations is maintained in each group. The application of the proposed method is illustrated on a real data of insurance losses for bodily injury claims.
机译:先前尚未考虑在给定间隔内使用约束进行采样。标准参数仿真引擎需要了解从中提取样本的分布参数。如果模拟数据需要附加约束,则这些方法将受到限制。我们提出一种在给定间隔内生成目标数量的单个观测值的方法,该约束条件是观测值的平均值已知。当为每个组提供观测的频率和平均值时,该方法进一步扩展为分组数据设置,作为数据去分组的一种方式。在单个间隔和分组数据的情况下,针对不同的仿真设置,采用了几种仿真研究来评估所提出方法的性能。此外,当将不同的分布拟合到分组数据时,在参数恢复中评估了所提出的方法。发现该方法优于先前在数据去分组中使用的统一方法。仿真研究的结果令人鼓舞,并且表明该方法可以成功用于数据去分组要求在每个组中保持观测值平均值的应用中。在人身伤害索赔的真实保险损失数据上说明了该方法的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号