首页> 外文期刊>Journal of statistical computation and simulation >A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns
【24h】

A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns

机译:存在多种数据模式时定量数据插补方法的模拟比较

获取原文
获取原文并翻译 | 示例

摘要

An extensive investigation via simulation is carried out with the aim of comparing three nonparametric, single imputation methods in the presence of multiple data patterns. The ultimate goal is to provide useful hints for users needing to quickly pick the most effective imputation method among the following: Forward Imputation (Forlmp), considered in the two variants of with the principal component analysis (PCA), which alternates the use of PCA and the Nearest-Neighbour Imputation (NNI) method in a forward, sequential procedure, and with the Mahalanobis distance, which involves the use of the Mahalanobis distance when performing NNI; the iterative PCA technique, which imputes missing values simultaneously via PCA; the method, which is based on random forests and is developed for mixed-type data. The performance of these methods is compared under several data patterns characterized by different levels of kurtosis or skewness and correlation structures.
机译:通过仿真进行了广泛的研究,目的是在存在多个数据模式的情况下比较三种非参数的单一插补方法。最终目标是为需要快速选择最有效的插补方法的用户提供有用的提示:正插补(Forlmp),在主成分分析(PCA)的两个变体中考虑,从而交替使用PCA前向连续插补(NNI)方法,并且采用马氏距离,这涉及在执行NNI时使用马氏距离;迭代PCA技术,可通过PCA同时估算缺失值;该方法基于随机森林,专为混合类型数据开发。在几种数据模式下比较了这些方法的性能,这些数据模式具有不同的峰度或偏度水平以及相关结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号