首页> 外文期刊>Journal of statistical computation and simulation >The efficiency of a nonlinear discriminant function based on unclassified initial samples from a mixture of two Weibull populations
【24h】

The efficiency of a nonlinear discriminant function based on unclassified initial samples from a mixture of two Weibull populations

机译:基于来自两个威布尔群的混合的未分类初始样本的非线性判别函数的效率

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear discriminant rule may be estimated by maximum likelihood estimation using unclassified observations. The performance of a nonlinear discriminant function based on a sample from a mixture of two Weibull distributions, with parameters λ, 萠1 , θ_2 and p, is examined. Asymptotic expansion and asymptotic expected values of probabilities of misclassification are presented. The asymptotic relative efficiencies (AREs) of mixture and classified discrimination procedures are evaluated and discussed for selected parameters. Computations show that for fixed λ and p, as Δ = |θ_1 - θ_2| increases the ARE increases. Furthermore, for fixed λ and Δ, as p varies from 0.2 to 0.8 the values of ARE decrease. On the other hand, for fixed p and Δ, the ARE in case of λ = 0.5 are close to the ARE in the case of λ = 2.
机译:可以使用未分类的观察值通过最大似然估计来估计非线性判别规则。检验了基于两个威布尔分布的混合样本(参数为λ,萠1,θ2和p)的非线性判别函数的性能。给出了错误分类概率的渐近展开和渐近期望值。对于所选参数,对混合物的渐近相对效率(ARE)和分类判别程序进行了评估和讨论。计算表明,对于固定的λ和p,当Δ= |θ_1-θ_2|时增加ARE增加。此外,对于固定的λ和Δ,当p从0.2变为0.8时,ARE的值减小。另一方面,对于固定的p和Δ,λ= 0.5时的ARE接近λ= 2时的ARE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号