首页> 外文期刊>Journal of statistical computation and simulation >Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting
【24h】

Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting

机译:时间序列中ARIMA,神经网络和混合模型的比较:游客到达预测

获取原文
获取原文并翻译 | 示例

摘要

For time series forecasting, different artificial neural network (ANN) and hybrid models are recommended as alternatives to commonly used autoregressive integrated moving average (ARIMA) models. Recently, combined models with both linear and nonlinear models have greater attention. In this article, ARIMA, linear ANN, multilayer perceptron (MLP), and radial basis function network (RBFN) models are considered along with various combinations of these models for forecasting tourist arrivals to Turkey. Comparison of forecasting performances shows that models with nonlinear components give a better performance.
机译:对于时间序列预测,建议使用不同的人工神经网络(ANN)和混合模型来替代常用的自回归综合移动平均值(ARIMA)模型。近来,具有线性和非线性模型的组合模型受到更多关注。在本文中,考虑了ARIMA,线性ANN,多层感知器(MLP)和径向基函数网络(RBFN)模型以及这些模型的各种组合,以预测前往土耳其的游客人数。预测性能的比较表明,具有非线性成分的模型具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号